Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
Numéro d'article 70
Nombre de pages 15
DOI https://doi.org/10.2516/ogst/2021052
Publié en ligne 3 novembre 2021
  • Solomon B.D., Krishna K. (2011) The coming sustainable energy transition: History, strategies, and outlook, Energy Policy 39, 11, 7422–7431. [CrossRef] [Google Scholar]
  • Ye B., Zhang K., Jiang J.J., Miao L.X., Li J. (2017) Towards a 90% renewable energy future: A case study of an island in the South China Sea, Energ. Convers. Manage. 142, 28–41. [CrossRef] [Google Scholar]
  • Liu B., Liu S.X., Guo S.S., Zhang S.X. (2019) Economic study of a large-scale renewable hydrogen application utilizing surplus renewable energy and natural gas pipeline transportation in China, Int. J. Hydrogen Energ. 45, 3, 1385–1398. [Google Scholar]
  • Öney F., Veziroğlu T.N., Dülger Z. (1994) Evaluation of pipeline transportation of hydrogen and natural gas mixtures, Int. J. Hydrogen Energ. 19, 10, 813–822. [Google Scholar]
  • Asadnia M., Mehrpooya M. (2017) A novel hydrogen liquefaction process configuration with combined mixed refrigerant systems, Int. J. Hydrogen Energ. 42, 23, 15564–15585. [CrossRef] [Google Scholar]
  • Adam P., Engelshove S., Heunemann F., Thiemann T., Bussche C.V.D. (2020) Hydrogen infrastructure-the pillar of energy transition: The practical conversion of long-distance gas networks to hydrogen operation, Siemens Energy, Gascade Gastransport GmbH, Nowega GmbH. [Google Scholar]
  • Haeseldonckx D., D’haeseleer W. (2007) The use of the natural-gas pipeline infrastructure for hydrogen transport in a changing market structure, Int. J. Hydrogen Energ. 32, 10–11, 1381–1386. [CrossRef] [Google Scholar]
  • Yang C., Ogden J. (2007) Determining the lowest-cost hydrogen delivery mode, Int. J. Hydrogen Energ. 32, 2, 268–286. [CrossRef] [Google Scholar]
  • Messaoudani Z.L., Rigas F., Hamid M.D.B., Hassan C.R.C. (2016) Hazards, safety and knowledge gaps on hydrogen transmission via natural gas grid: A critical review, Int. J. Hydrogen Energ. 41, 39, 17511–17525. [CrossRef] [Google Scholar]
  • International Energy Agency (2019) The future of hydrogen: seizing today’s opportunities. [Google Scholar]
  • Tiekstra G.C., Gasunie N.V.N., Folkert P.K., Gasunie N.V.N. (2008) The NATURALHY project: first step in assessing the potential of the existing natural gas network for hydrogen delivery, IGRC, Paris. [Google Scholar]
  • Kippers M.J., De Laat J.C., Hermkens R.J.M., Overdiep J.J., Van Der Molen A., Van Erp W.C., Van Der Meer A. (2001) Pilot project on hydrogen injection in natural gas on island of Ameland in the Netherlands, Proc. Int. Gas Research Conf. 2, 1163–1177. [Google Scholar]
  • Klopffer M.H., Berne P., Espuche É. (2015) Development of innovating materials for distributing mixtures of hydrogen and natural gas. Study of the barrier properties and durability of polymer pipes, Oil Gas Sci. Technol.-Rev. IFP Energies nouvelles 70, 2, 305–315. [CrossRef] [Google Scholar]
  • Tabkhi F., Azzaro-Pantel C., Pibouleau L., Domenech S. (2008) A mathematical framework for modelling and evaluating natural gas pipeline networks under hydrogen injection, Int. J. Hydrogen Energ. 33, 11, 6222–6231. [CrossRef] [Google Scholar]
  • Elaoud S., Hadj-Taïeb E. (2008) Transient flow in pipelines of high-pressure hydrogen-natural gas mixtures, Int. J. Hydrogen Energ. 33, 18, 4824–4832. [CrossRef] [Google Scholar]
  • Elaoud S., Hafsi Z., Hadj-Taïeb L. (2017) Numerical modelling of hydrogen-natural gas mixtures flows in looped networks, J. Petrol. Sci. Eng. 159, 532–541. [CrossRef] [Google Scholar]
  • Guandalini G., Colbertaldo P., Campanari S. (2017) Dynamic modeling of natural gas quality within transport pipelines in presence of hydrogen injections, Appl. Energ. 185, 2, 1712–1723. [CrossRef] [Google Scholar]
  • Wang W., Wang Q.Y., Deng H.Q., Cheng G.X., Li Y. (2020) Feasibility analysis on the transportation of hydrogen-natural gas mixtures in natural gas pipelines, Nat. Gas Ind. 403, 130–136 (in Chinese). [Google Scholar]
  • Hafsi Z., Elaoud S., Mishra M. (2019) A computational modelling of natural gas flow in looped network: Effect of upstream hydrogen injection on the structural integrity of gas pipelines, J. Nat. Gas Sci. Eng. 64, 107–117. [CrossRef] [Google Scholar]
  • Hafsi Z., Elaoud S., Akrout M., Hadj-Taïeb E. (2017) Numerical approach for steady state analysis of hydrogen-natural gas mixtures flows in looped network, Arab. J. Sci. Eng. 42, 5, 1941–1950. [CrossRef] [Google Scholar]
  • Wu C. (2018) Feasibility study on blending hydrogen into natural gas distribution network, Chongqing University, Chongqiang, China (in Chinese). [Google Scholar]
  • Uilhoorn F. (2009) Dynamic behaviour of non-isothermal compressible natural gases mixed with hydrogen in pipelines, Int. J. Hydrogen Energ. 34, 16, 6722–6729. [CrossRef] [Google Scholar]
  • Li Y.X., Yao G.Z. (2009) Design and management of natural gas pipeline, 2nd edn., Academic Press, Dongying, China (in Chinese). [Google Scholar]
  • Soave G. (1972) Equilibrium constants from a modified Redlich-Kwong equation of state, Chem. Eng. Sci. 27, 6, 1197–1203. [Google Scholar]
  • Peng D.Y., Robinson D.B. (1976) A new two-constant equation of state, Ind. Eng. Chem. Fundam. 15, 1, 59–64. [CrossRef] [Google Scholar]
  • Soave G.S. (1999) An effective modification of the Benedict–Webb–Rubin equation of state, Fluid Phase Equilibr. 164, 2, 157–172. [CrossRef] [Google Scholar]
  • Varzandeh F., Stenby E.H., Yan W. (2017) Comparison of GERG-2008 and simpler EoS models in calculation of phase equilibrium and physical properties of natural gas related systems, Fluid Phase Equilibr. 434, 21–43. [CrossRef] [Google Scholar]
  • Wang P., Yu B., Deng Y., Zhao Y. (2015) Comparison study on the accuracy and efficiency of the four forms of hydraulic equation of a natural gas pipeline based on linearized solution, J. Nat. Gas Sci. Eng. 22, 235–244. [CrossRef] [Google Scholar]
  • Wang P., Ao S.M., Yu B., Han D.X., Xiang Y. (2019) An efficiently decoupled implicit method for complex natural gas pipeline network simulation, Energies 12, 8, 1516. [CrossRef] [Google Scholar]
  • Xiang Y., Wang P., Yu B., Sun D.L. (2020) GPU-accelerated hydraulic simulations of large-scale natural gas pipeline networks based on a two-level parallel process, Oil Gas Sci. Technol.-Rev. IFP Energies nouvelles 75, 86. [CrossRef] [Google Scholar]
  • Wang L.Y., Wang P., Cao Z.Z., Yu B., Li W. (2017) Similarity conversion of centrifugal natural gas compressors based on predictor-corrector, Procedia Comput. Sci. 108, 1973–1981. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.