- Dyes A.B., Caudle B.H., Erickson R.A. (1954) Oil production after breakthrough as influenced by mobility ratio, J. Petrol. Technol. 6, 04, 27–32. SPE-213-G. https://doi.org/10.2118/309-G. [CrossRef] [Google Scholar]
- van Meurs P., van der Poel C. (1958) A theoretical description of water-drive processes involving viscous fingering, Society of Petroleum Engineers. [Google Scholar]
- Perkins T.K., Johnston O.C. (1969) A study of immiscible fingering in linear models, Soc. Pet. Eng. J. 9, 01, 39–46. SPE-8371-PA. https://doi.org/10.2118/2230-PA. [CrossRef] [Google Scholar]
- Hagoort J. (1974) Displacement stability of water drives in water-wet connate-water-bearing reservoirs, Soc. Pet. Eng. J. 14, 01, 63–74. SPE-8371-PA. https://doi.org/10.2118/4268-PA. [CrossRef] [Google Scholar]
- Yortsos Y.C., Huang A.B. (1986) Linear-stability analysis of immiscible displacement: Part 1-simple basic flow profiles, SPE Reserv. Eng. 1, 04, 378–390. SPE-12692-PA. https://doi.org/10.2118/12692-PA. [CrossRef] [Google Scholar]
- Koval E.J. (1963) A method for predicting the performance of unstable miscible displacement in heterogeneous media, Soc. Pet. Eng. J. 3, 02, 145–154. SPE-8371-PA. https://doi.org/10.2118/450-PA. [CrossRef] [Google Scholar]
- Rapoport L.A., Leas W.J. (1953) Properties of linear waterfloods, J. Petrol. Technol. 5, 05, 139–148. SPE-213-G. https://doi.org/10.2118/213-G. [CrossRef] [Google Scholar]
- Peters E.J., Flock D.L. (1981) The onset of instability during two-phase immiscible displacement in porous media, Soc. Pet. Eng. J. 21, 02, 249–258. SPE-8371-PA. https://doi.org/10.2118/8371-PA. [CrossRef] [Google Scholar]
- Chuoke R.L., van Meurs P., van der Poel C. (1959) The instability of slow, immiscible, viscous liquid-liquid displacements in permeable media, Society of Petroleum Engineers. [Google Scholar]
- Lenormand R., Touboul E., Zarcone C. (1988) Numerical models and experiments on immiscible displacements in porous media, J. Fluid Mech. 189, 165–187. https://doi.org/10.1017/S0022112088000953. [Google Scholar]
- Doorwar S. (2015) Understanding unstable immiscible displacement in porous media, The University of Texas at Austin, Austin, TX, USA. https://doi.org/10.15781/T25G6Q. [Google Scholar]
- Bouquet S., Douarche F., Roggero F., Leray S. (2020) Characterization of viscous fingering and channeling for the assessment of polymer-based heavy oil displacements, Transp. Porous Media 131, 3, 873–906. https://doi.org/10.1007/s11242-019-01370-3. [CrossRef] [Google Scholar]
- Worawutthichanyakul T., Mohanty K.K. (2017) Unstable immiscible displacements in oil-wet rocks, Transp. Porous Media 119, 1, 205–223. https://doi.org/10.1007/s11242-017-0880-6. [Google Scholar]
- Vives M.T., Chang Y.C., Mohanty K.K. (1995) Effect of wettability on adverse mobility immiscible floods, Society of Petroleum Engineers, 10 p. [Google Scholar]
- de Haan J. (1959) 25. Effect of Capillary Forces in the Water-Drive Process, World Petroleum Congress, 18 p. [Google Scholar]
- Chatzis I., Dullien F. (1983) Dynamic immiscible displacement mechanisms in pore doublets: Theory versus experiment, J. Coll. Interf. Sci. 91, 1, 199–222. https://doi.org/10.1016/0021-9797(83)90326-0. [CrossRef] [Google Scholar]
- Loubens R.D., Vaillant G., Regaieg M., Yang J., Moncorgé A., Fabbri C., Darche G. (2017) Numerical modeling of unstable water floods and tertiary polymer floods into highly viscous oils, in: SPE Reservoir Simulation Conference, February 20–22, 2017, Montgomery, TX, USA, Society of Petroleum Engineers. https://doi.org/10.2118/182638-MS. [Google Scholar]
- Doorwar S., Ambastha A. (2020) Pseudorelative permeabilities for simulation of unstable viscous oil displacement, SPE Reserv. Eval. Eng. 23, 04, 1403–1419. SPE-179648-PA. https://doi.org/10.2118/200421-PA. [CrossRef] [Google Scholar]
- Luo H., Mohanty K.K., Delshad M. (2017) Modeling and upscaling unstable water and polymer floods: Dynamic characterization of the effective viscous fingering, SPE Reserv. Eval. Eng. 20, 04, 779–794. SPE-179648-PA. https://doi.org/10.2118/179648-PA. [Google Scholar]
- Doorwar S., Mohanty K.K. (2017) Viscous-fingering function for unstable immiscible flows (includes associated Erratum), SPE J. 22, 01, 19–31. SPE-173290-PA. https://doi.org/10.2118/173290-PA. [Google Scholar]
- Fayers F.J. (1988) An approximate model with physically interpretable parameters for representing miscible viscous fingering, SPE Reserv. Eng. 3, 02, 551–558. SPE-12692-PA. https://doi.org/10.2118/13166-PA. [CrossRef] [Google Scholar]
- Sharma J., Inwood S.B., Kovscek A. (2012) Experiments and analysis of multiscale viscous fingering during forced imbibition, SPE J. 17, 04, 1142–1159. SPE-173290-PA. https://doi.org/10.2118/143946-PA. [CrossRef] [Google Scholar]
- Skauge A., Ormehaug P.A., Gurholt T., Vik B., Bondino I., Hamon G. (2012) 2-D visualisation of unstable waterflood and polymer flood for displacement of heavy oil, Society of Petroleum Engineers, 12 p. [Google Scholar]
- Doorwar S., Mohanty K.K. (2014) Extension of the dielectric breakdown model for simulation of viscous fingering at finite viscosity ratios, Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 90, 1, 13028. https://doi.org/10.1103/PhysRevE.90.013028. [CrossRef] [Google Scholar]
- Raeesi B., Morrow N.R., Mason G. (2014) Capillary pressure hysteresis behavior of three sandstones measured with a multistep outflow-inflow apparatus, Vadose Zone J. 13, 3. https://doi.org/10.2136/vzj2013.06.0097. [CrossRef] [Google Scholar]
- Lin Q., Bijeljic B., Pini R., Blunt M.J., Krevor S. (2018) Imaging and measurement of pore-scale interfacial curvature to determine capillary pressure simultaneously with relative permeability, Water Resour. Res. 54, 9, 7046–7060. https://doi.org/10.1029/2018WR023214. [CrossRef] [Google Scholar]
- Harleman D.R.F., Rumer R.R. (1963) Longitudinal and lateral dispersion in an isotropic porous medium, J. Fluid Mech. 16, 3, 385–394. https://doi.org/10.1017/S0022112063000847. [CrossRef] [Google Scholar]
- Brock D.C., Orr F.M. Jr (1991) Flow visualization of viscous fingering in heterogeneous porous media, Society of Petroleum Engineers, 12 p. [Google Scholar]
- Riaz A., Tchelepi H.A. (2004) Linear stability analysis of immiscible two-phase flow in porous media with capillary dispersion and density variation, Phys. Fluids 16, 12, 4727–4737. https://doi.org/10.1063/1.1812511. [CrossRef] [MathSciNet] [Google Scholar]
- Anton L., Hilfer R. (1999) Trapping and mobilization of residual fluid during capillary desaturation in porous media, Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 59, 6, 6819–6823. https://doi.org/10.1103/physreve.59.6819. [Google Scholar]
- Berg S., Ott H. (2012) Stability of CO2 – brine immiscible displacement, Int. J. Greenhouse Gas Cont. 11, 188–203. https://doi.org/10.1016/j.ijggc.2012.07.001. [CrossRef] [Google Scholar]
- Pavone D. (1992) Observations and correlations for immiscible viscous-fingering experiments, SPE Reserv. Eng. 7, 02, 187–194. SPE-12692-PA. https://doi.org/10.2118/19670-PA. [CrossRef] [Google Scholar]
- Craig F.F. (1971) The reservoir engineering aspects of waterflooding, Society of Petroleum Engineers. ISBN: 978-0-89520-202-4. [Google Scholar]
- Tang G.-Q., Kovscek A.R. (2011) High resolution imaging of unstable, forced imbibition in berea sandstone, Transp. Porous Media 86, 2, 617–634. https://doi.org/10.1007/s11242-010-9643-3. [CrossRef] [Google Scholar]
- Mascle M., Youssef S., Deschamps H., Vizika O. (2019) In-situ investigation of aging protocol effect on relative permeability measurements using high-throughput experimentation methods, Petrophys. – SPWLA J. Form. Eval. Reserv. Description 60, 04, 514–524. SPWLA-2019-v60n4a5. [CrossRef] [Google Scholar]
- Clauset A., Shalizi C.R., Newman M.E.J. (2009) Power-law distributions in empirical data, SIAM Rev. 51, 4, 661–703. https://doi.org/10.1137/070710111. [NASA ADS] [CrossRef] [Google Scholar]
- Salathiel R.A. (1973) Oil recovery by surface film drainage in mixed-wettability rocks, J. Petrol. Technol. 25, 10, 1216–1224. SPE-213-G. https://doi.org/10.2118/4104-PA. [CrossRef] [Google Scholar]
- Buckley S.E., Leverett M.C. (1942) Mechanism of fluid displacement in sands, Trans. AIME 146, 01, 107–116. SPE-942107-G. https://doi.org/10.2118/942107-G. [Google Scholar]
Open Access
Issue |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
|
|
---|---|---|
Article Number | 71 | |
Number of page(s) | 17 | |
DOI | https://doi.org/10.2516/ogst/2021053 | |
Published online | 03 November 2021 |
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.