Advanced modeling and simulation of flow in subsurface reservoirs with fractures and wells for a sustainable industry
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Advanced modeling and simulation of flow in subsurface reservoirs with fractures and wells for a sustainable industry
Numéro d'article 63
Nombre de pages 17
DOI https://doi.org/10.2516/ogst/2020058
Publié en ligne 18 septembre 2020
  • Liu H., Wang K., Chen Z. (2016) A family of constrained press residual preconditioners for parallel reservoir simulations, Numer. Linear Algeb. Appl. 23, 120–146. [CrossRef] [Google Scholar]
  • Crookston R.B., Culham W.E., Chen W.H. (1979) A numerical simulation model for thermal recovery processes, Soc. Pet. Eng. J. 19, 37–58. [CrossRef] [Google Scholar]
  • Coats K.H. (1980) In-situ combustion model, SPE Soc. Pet. Eng. AIME 20, 533–554. [CrossRef] [Google Scholar]
  • Coats K.H. (1987) Reservoir simulation, Pet. Eng. Handbook 48, 20–48. [Google Scholar]
  • Dogru A.H., Li K.G., Sunaidi H.A., Habiballah W.A., Fung L.S.K., Al-Zamil N., Shin D., McDonald A.E., Srivastava N.K. (1999) A massively parallel reservoir simulator for large scale reservoir simulation, in: SPE Reservoir Simulation Symposium, 14–17 February, Houston, Texas. [Google Scholar]
  • Hu X., Liu W., Qin G., Xu J., Zhang Z. (2011) Development of a fast auxiliary subspace pre-conditioner for numerical reservoir simulators, in: SPE Reservoir Characterisation and Simulation Conference and Exhibition. [Google Scholar]
  • Redlich O., Kwong J.N. (1949) On the thermodynamics of solutions. v. an equation of state. fugacities of gaseous solutions, Chem. Rev. 44, 1, 233–244. [CrossRef] [PubMed] [Google Scholar]
  • Bank R., Chan T. (1989) The alternate-block-factorization procedure for systems of partial differential equations, BIT Numer. 4, 29, 938–954. [CrossRef] [Google Scholar]
  • Peaceman D.W. (1978) Interpretation of well-block pressures in numerical reservoir simulation, Soc. Pet. Eng. J. 18, 3, 183–194. [CrossRef] [Google Scholar]
  • CMG. (2015) STARS user’s guide, Computer Modelling Group Ltd, Calgary, Canada. [Google Scholar]
  • Chen Z., Ewing R.E., Jiang Q., Spagnuolo A.M. (2003) Error analysis for characteristics-based methods for degenerate parabolic problems, SIAM J. Numer. Anal. 40, 1491–1515. [Google Scholar]
  • van Poolen H.K., Breitenback E.A., Thurnau D.H. (1968) Treatment of individual wells and grids in reservoir modeling, SPE J. 8, 341–346. [Google Scholar]
  • Chen Z., Huan G., Ma Y. (2006) Computational methods for multiphase flows in porous media, Computational Science and Engineering Series, Vol. 2, SIAM, Philadelphia. [CrossRef] [Google Scholar]
  • Peaceman D.W. (1983) Interpretation of well-block pressures in numerical reservoir simulation with non-square grid blocks and anisotropic peameability, SPE J. 23, 3, 531–543. [Google Scholar]
  • Peaceman D.W. (1991) Presentation of a horizontal well in numerical reservoir simulation SPE-21217, SPE Symposium on Reservoir Simulation, Anaheim. [Google Scholar]
  • Chen Z., Zhang Y. (2009) Well flow models for various numerical methods, Int. J. Numer. Anal. Model. 6, 375–388. [Google Scholar]
  • Abou-Kassem J.H., Aziz K. (1985) Analytical well models for reservoir simulation, SPE J. 25, 4, 573–579. [Google Scholar]
  • Nolen J.S. (1990) Treatment of wells in reservoir simulation, Technical Report. [Google Scholar]
  • Jiang Y.L. (2007) Techniques for modeling complex reservoirs and advanced wells, PhD Thesis, Stanford University, Stanford, CA. [Google Scholar]
  • Dong C. (2012) An integrated multi-component reservoir-wellbore thermal model, PhD Thesis, University of Calgary, Calgary, AB. [Google Scholar]
  • Holmes J.A., Barkve T., Lund O. (1998) Application of a multisegment well model to simulate flow in advanced wells, in: SPE-50646, SPE European Petroleum Conference. [Google Scholar]
  • Xiong W.Q. (2014) Development of a standalone thermal wellbore simulator, University of Calgary, Calgary, AB. [Google Scholar]
  • Huang C.K. (2009) Development of a general thermal oil reservoir simulator under a modularized framework, PhD Thesis, University of Utah, Salt Lake City, UT. [Google Scholar]
  • He R., Yang B., Liu H., Chen Z. (2018) A new in-situ combustion simulator for parallel computers, ArXiv e-prints [arXiv:1811.11992]. [Google Scholar]
  • Chen Z. (2007) Reservoir simulation: Mathematical techniques in oil recovery, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 77, SIAM, Philadelphia. [CrossRef] [Google Scholar]
  • Corey A.T., Rathjens C.H., Henderson J.H., Wyllie M.R.J. (1956) Three-phase relative permeability, J. Pet. Technol. 8, 11, 63–65. [CrossRef] [Google Scholar]
  • Naar J., Wygal R.J. (1961) Three-phase imbibition relative permeability, Soc. Pet. Eng. J. 1, 4, 254–258. [CrossRef] [Google Scholar]
  • Stone H.L. (1970) Probability model for estimating three-phase relative permeability, J. Pet. Technol. 22, 2, 214–218. [CrossRef] [Google Scholar]
  • Delshad M., Pope G.A. (1989) Comparison of the three-phase oil relative permeability models, Transp. Porous Media 4, 1, 59–83. [Google Scholar]
  • Stone H.L. (1973) Estimation of three-phase relative permeability and residual oil data, J. Can. Pet. Technol. 12, 4, 53–61. [CrossRef] [Google Scholar]
  • Vinsome P.K., Westerveld J.D. (1980) A simple method for predicting cap and base rock heat losses in thermal reservoir simulators, J. Can. Pet. Technol. 19, 3, 87–90. [Google Scholar]
  • Aziz K., Ramesh A.B., Woo P.T. (1987) Fourth SPE comparative solution project: Comparison of steam injection simulators, SPE-13510-PA, J. Pet. Technol. 39, 12, 1576–1584. [CrossRef] [Google Scholar]
  • Cedar supercomputer, Compute Canada. https://docs.computecanada.ca/wiki/Cedar . [Google Scholar]
  • Archer supercomputer, UK National Supercomputing Service. https://www.archer.ac.uk/about-archer/ . [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.