Advanced modeling and simulation of flow in subsurface reservoirs with fractures and wells for a sustainable industry
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Advanced modeling and simulation of flow in subsurface reservoirs with fractures and wells for a sustainable industry
Article Number 63
Number of page(s) 17
DOI https://doi.org/10.2516/ogst/2020058
Published online 18 September 2020
  • Liu H., Wang K., Chen Z. (2016) A family of constrained press residual preconditioners for parallel reservoir simulations, Numer. Linear Algeb. Appl. 23, 120–146. [CrossRef] [Google Scholar]
  • Crookston R.B., Culham W.E., Chen W.H. (1979) A numerical simulation model for thermal recovery processes, Soc. Pet. Eng. J. 19, 37–58. [CrossRef] [Google Scholar]
  • Coats K.H. (1980) In-situ combustion model, SPE Soc. Pet. Eng. AIME 20, 533–554. [CrossRef] [Google Scholar]
  • Coats K.H. (1987) Reservoir simulation, Pet. Eng. Handbook 48, 20–48. [Google Scholar]
  • Dogru A.H., Li K.G., Sunaidi H.A., Habiballah W.A., Fung L.S.K., Al-Zamil N., Shin D., McDonald A.E., Srivastava N.K. (1999) A massively parallel reservoir simulator for large scale reservoir simulation, in: SPE Reservoir Simulation Symposium, 14–17 February, Houston, Texas. [Google Scholar]
  • Hu X., Liu W., Qin G., Xu J., Zhang Z. (2011) Development of a fast auxiliary subspace pre-conditioner for numerical reservoir simulators, in: SPE Reservoir Characterisation and Simulation Conference and Exhibition. [Google Scholar]
  • Redlich O., Kwong J.N. (1949) On the thermodynamics of solutions. v. an equation of state. fugacities of gaseous solutions, Chem. Rev. 44, 1, 233–244. [CrossRef] [PubMed] [Google Scholar]
  • Bank R., Chan T. (1989) The alternate-block-factorization procedure for systems of partial differential equations, BIT Numer. 4, 29, 938–954. [CrossRef] [Google Scholar]
  • Peaceman D.W. (1978) Interpretation of well-block pressures in numerical reservoir simulation, Soc. Pet. Eng. J. 18, 3, 183–194. [CrossRef] [Google Scholar]
  • CMG. (2015) STARS user’s guide, Computer Modelling Group Ltd, Calgary, Canada. [Google Scholar]
  • Chen Z., Ewing R.E., Jiang Q., Spagnuolo A.M. (2003) Error analysis for characteristics-based methods for degenerate parabolic problems, SIAM J. Numer. Anal. 40, 1491–1515. [Google Scholar]
  • van Poolen H.K., Breitenback E.A., Thurnau D.H. (1968) Treatment of individual wells and grids in reservoir modeling, SPE J. 8, 341–346. [Google Scholar]
  • Chen Z., Huan G., Ma Y. (2006) Computational methods for multiphase flows in porous media, Computational Science and Engineering Series, Vol. 2, SIAM, Philadelphia. [CrossRef] [Google Scholar]
  • Peaceman D.W. (1983) Interpretation of well-block pressures in numerical reservoir simulation with non-square grid blocks and anisotropic peameability, SPE J. 23, 3, 531–543. [Google Scholar]
  • Peaceman D.W. (1991) Presentation of a horizontal well in numerical reservoir simulation SPE-21217, SPE Symposium on Reservoir Simulation, Anaheim. [Google Scholar]
  • Chen Z., Zhang Y. (2009) Well flow models for various numerical methods, Int. J. Numer. Anal. Model. 6, 375–388. [Google Scholar]
  • Abou-Kassem J.H., Aziz K. (1985) Analytical well models for reservoir simulation, SPE J. 25, 4, 573–579. [Google Scholar]
  • Nolen J.S. (1990) Treatment of wells in reservoir simulation, Technical Report. [Google Scholar]
  • Jiang Y.L. (2007) Techniques for modeling complex reservoirs and advanced wells, PhD Thesis, Stanford University, Stanford, CA. [Google Scholar]
  • Dong C. (2012) An integrated multi-component reservoir-wellbore thermal model, PhD Thesis, University of Calgary, Calgary, AB. [Google Scholar]
  • Holmes J.A., Barkve T., Lund O. (1998) Application of a multisegment well model to simulate flow in advanced wells, in: SPE-50646, SPE European Petroleum Conference. [Google Scholar]
  • Xiong W.Q. (2014) Development of a standalone thermal wellbore simulator, University of Calgary, Calgary, AB. [Google Scholar]
  • Huang C.K. (2009) Development of a general thermal oil reservoir simulator under a modularized framework, PhD Thesis, University of Utah, Salt Lake City, UT. [Google Scholar]
  • He R., Yang B., Liu H., Chen Z. (2018) A new in-situ combustion simulator for parallel computers, ArXiv e-prints [arXiv:1811.11992]. [Google Scholar]
  • Chen Z. (2007) Reservoir simulation: Mathematical techniques in oil recovery, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 77, SIAM, Philadelphia. [CrossRef] [Google Scholar]
  • Corey A.T., Rathjens C.H., Henderson J.H., Wyllie M.R.J. (1956) Three-phase relative permeability, J. Pet. Technol. 8, 11, 63–65. [CrossRef] [Google Scholar]
  • Naar J., Wygal R.J. (1961) Three-phase imbibition relative permeability, Soc. Pet. Eng. J. 1, 4, 254–258. [CrossRef] [Google Scholar]
  • Stone H.L. (1970) Probability model for estimating three-phase relative permeability, J. Pet. Technol. 22, 2, 214–218. [CrossRef] [Google Scholar]
  • Delshad M., Pope G.A. (1989) Comparison of the three-phase oil relative permeability models, Transp. Porous Media 4, 1, 59–83. [Google Scholar]
  • Stone H.L. (1973) Estimation of three-phase relative permeability and residual oil data, J. Can. Pet. Technol. 12, 4, 53–61. [CrossRef] [Google Scholar]
  • Vinsome P.K., Westerveld J.D. (1980) A simple method for predicting cap and base rock heat losses in thermal reservoir simulators, J. Can. Pet. Technol. 19, 3, 87–90. [Google Scholar]
  • Aziz K., Ramesh A.B., Woo P.T. (1987) Fourth SPE comparative solution project: Comparison of steam injection simulators, SPE-13510-PA, J. Pet. Technol. 39, 12, 1576–1584. [CrossRef] [Google Scholar]
  • Cedar supercomputer, Compute Canada. https://docs.computecanada.ca/wiki/Cedar . [Google Scholar]
  • Archer supercomputer, UK National Supercomputing Service. https://www.archer.ac.uk/about-archer/ . [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.