- Awange J.L., Paláncz B., Lewis R.H., Völgyesi L. (2018) Mathematical geosciences: Hybrid symbolic-numeric methods, Springer. doi: 10.1007/978-3-319-67371-4. [CrossRef] [Google Scholar]
- Bézier P. (1977) Essai de définition numérique des courbes et des surfaces expérimentales. Contribution à l’étude des propriétés des courbes et des surfaces paramétriques polynomiales à coefficients vectoriels, Thèse d’Etat, Paris VI. [Google Scholar]
- Bézier P. (1987) Mathématiques et CAO : courbes et surfaces, Tome 4, Hermès. [Google Scholar]
- Castaño D.D., Jager G., Kunoth A. (2009) Mutiscale analysis of multivariate data, in: Architecture and Civil Engineering, K. Gürlebeck, C. Könke (eds), Weimar, Germany. [Google Scholar]
- Chen C., Li Y., Zhao N., Guo B., Mou N. (2018a) Least squares compactly supported radial basis function for digital terrain model interpolation from Airborne Lidar Point Clouds, Remote Sens. 10, 4, 587. doi: 10.3390/rs10040587. [CrossRef] [Google Scholar]
- Chen C., Li Y., Zhao N., Yan C. (2018b) Robust interpolation of DEMs from Lidar-derived elevation data, IEEE Trans. Geosci. Remote Sens. 56, 2, 1059–1068. doi: 10.1109/TGRS.2017.2758795. [Google Scholar]
- Claerbout J., Muir F. (1973) Robust modeling with erratic data, Geophysics 38, 5, 826–844. [CrossRef] [Google Scholar]
- Conjugated gradient method: https://en.wikipedia.org/wiki/Conjugate_gradient_method. [Google Scholar]
- Finite difference: https://en.wikipedia.org/wiki/Finite_difference. [Google Scholar]
- Foster M.P., Evans A.N. (2008) Performance evaluation of multivariate interpolation methods for scattered data in geoscience applications, in: IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Boston, MA, USA. [Google Scholar]
- Hestenes M.R., Stiefel E. (1952) Methods of conjugate gradients for solving linear systems, Res. Paper Nat. Bureau Stand. 49, 6, 409–436. [Google Scholar]
- Hjelle Ø., Dæhlen M. (2005) Multilevel least squares approximation of scattered data over binary triangulations, Comput. Vis. Sci. 8, 83–91. doi: 10.1007/s00791-005-0154-7. [Google Scholar]
- Inverse Distance Weighting: https://en.wikipedia.org/wiki/Inverse_distance_weighting. [Google Scholar]
- Jespersen D.C. (1984) Multigrid methods for partial differential equations, in: Golub G.H. (ed), Studies in numerical analysis, The Mathematical Association of America 24, pp. 270–318. [Google Scholar]
- Léger M. (1999) Interpolation from Lagrange to Holberg, in: A. Cohen, C. Rabut, L.L. Schumaker (eds), Curve and surface fitting, Vanderbilt University Press, Nashville, TN, pp. 281–290. [Google Scholar]
- Léger M. (2016) Method of constructing a geological model. Patent US20160139299. [Google Scholar]
- Lu G., Wong D. (2007) An adaptive inverse-distance weighting spatial interpolation technique, Comput. Geosci. 34, 1044–1055. doi: 10.1016/j.cageo.2007.07.010. [Google Scholar]
- Mitra A., Onyia O., Frangeul J., Parsa A. (2017) Alwyn North Field Ocean Bottom Node (OBN) – A step change in seismic imagery, inversion & interpretation, in: 79th EAGE Conference & Exhibition, Paris, We A3 14. [Google Scholar]
- Ohtake Y., Belyaev A., Seidel H.-P. (2004) A multi-scale approach to 3D scattered data approximation with adaptive compactly supported radial basis functions, Solid Modeling International, pp. 31–39. doi: 10.1109/SMI.2004.1314491. [Google Scholar]
- Perrin M., Rainaud J.-F. (2013) Shared Earth modeling – knowledge driven solutions for building and managing subsurface 3D geological models. Technip. ISBN-13: 978-2710810025. [Google Scholar]
- Rogers D.F., Earnshaw R.A. (1991) State of the art in computer graphics – visualization and modeling, Springer-Verlag, New York, pp. 225–269. [Google Scholar]
- Sams M., Carter D. (2017) Stuck between a rock and a reflection: A tutorial on low-frequency models for seismic inversion, Interpretation 5, 2, B17–B27. doi: 10.1190/INT-2016-0150.1. [CrossRef] [Google Scholar]
- Schneider S. (2002) Pilotage automatique de la construction de modèles géologiques surfaciques, PhD Thesis, Université Jean Monnet et Ecole Nationale Supérieure des Mines de Saint-Etienne. [Google Scholar]
- Sobolev Inequality: https://en.wikipedia.org/wiki/Sobolev_inequality. [Google Scholar]
- Tarantola A. (1987) Inverse problem theory, Elsevier, Amsterdam. [Google Scholar]
Numéro |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Advanced modeling and simulation of flow in subsurface reservoirs with fractures and wells for a sustainable industry
|
|
---|---|---|
Numéro d'article | 62 | |
Nombre de pages | 11 | |
DOI | https://doi.org/10.2516/ogst/2020057 | |
Publié en ligne | 18 septembre 2020 |
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.