Dossier LES4ICE’18 : LES for Internal Combustion Engine Flows Conference
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
Dossier LES4ICE’18 : LES for Internal Combustion Engine Flows Conference
Numéro d'article 60
Nombre de pages 11
DOI https://doi.org/10.2516/ogst/2019025
Publié en ligne 27 juin 2019
  • Durand P., Gorokhovski M., Borghi R. (1999) An application of the probability density function model to diesel engine combustion, Combust. Sci. Technol. 144, 1–6, 47–78. [Google Scholar]
  • Sabel'nikov V., Gorokhovski M., Baricault N. (2006) The extended iem mixing model in the framework of the composition pdf approach: Applications to diesel spray combustion, Combust. Theory Modell. 10, 1, 155–169. [CrossRef] [Google Scholar]
  • Elghobashi S., Truesdell G.C. (1993) On the two-way interaction between homogeneous turbulence and dispersed solid particles. I: Turbulence modification, Phys. Fluids A: Fluid Dyn. 5, 7, 1790–1801. [CrossRef] [Google Scholar]
  • Ferrante A., Elghobashi S. (2003) On the physical mechanisms of two-way coupling in particle-laden isotropic turbulence, Phys. Fluids 15, 2, 315–329. [CrossRef] [Google Scholar]
  • Truesdell G.C., Elghobashi S. (1994) On the two-way interaction between homogeneous turbulence and dispersed solid particles. II. Particle dispersion, Phys. Fluids 6, 3, 1405–1407. [CrossRef] [Google Scholar]
  • Squires K.D., Eaton J.K. (1991) Preferential concentration of particles by turbulence, Phys. Fluids A: Fluid Dyn. 3, 5, 1169–1178. [NASA ADS] [CrossRef] [Google Scholar]
  • Rouson D.W., Eaton J.K. (2001) On the preferential concentration of solid particles in turbulent channel flow, J. Fluid Mech. 428, 149–169. [Google Scholar]
  • Toschi F., Bec J., Biferale L., Boffetta G., Celani A., Cencini M., Lanotte A.S., Musacchio S. (2008) Acceleration statistics of inertial particles from high resolution DNS turbulence, in: IUTAM Symposium on Computational Physics and New Perspectives in Turbulence, Springer, Dordrecht, pp. 73–78. [Google Scholar]
  • Cencini M., Bec J., Biferale L., Boffetta G., Celani A., Lanotte A.S., Toschi F. (2006) Dynamics and statistics of heavy particles in turbulent flows, J. Turbul. 7, N36. [CrossRef] [Google Scholar]
  • Smagorinsky J. (1963) General circulation experiments with the primitive equations: I. The basic experiment, Mon. Weather Rev. 91, 3, 99–164. [Google Scholar]
  • Yoshizawa A., Horiuti K. (1985) A statistically-derived subgrid-scale kinetic energy model for the large-eddy simulation of turbulent flows, J. Phys. Soc. Jpn. 54, 8, 2834–2839. [CrossRef] [Google Scholar]
  • Germano M., Piomelli U., Moin P., Cabot W.H. (1991) A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A: Fluid Dyn. 3, 7, 1760–1765. [NASA ADS] [CrossRef] [Google Scholar]
  • Chumakov S.G., Rutland C.J. (2005) Dynamic structure subgrid-scale models for large eddy simulation, Int. J. Num. Methods Fluids 47, 8–9, 911–923. [CrossRef] [Google Scholar]
  • Rutland C.J. (2011) Large-eddy simulations for internal combustion engines – A review, Int. J. Engine Res. 12, 5, 421–451. [CrossRef] [EDP Sciences] [Google Scholar]
  • Bharadwaj N., Rutland C.J., Chang S.M. (2009) Large eddy simulation modelling of spray-induced turbulence effects, Int. J. Engine Res. 10, 2, 97–119. [CrossRef] [Google Scholar]
  • Bharadwaj N., Rutland C.J. (2010) A large-eddy simulation study of sub-grid two-phase interaction in particle-laden flows and diesel engine sprays, Atomization Sprays 20, 8. [CrossRef] [Google Scholar]
  • Amsden A.A., Butler T.D., O’Rourke P.J. (1987) The KIVA-II computer program for transient multidimensional chemically reactive flows with sprays, SAE Trans. 373–383. [Google Scholar]
  • Tsang C.W., Kuo C.W., Trujillo M., Rutland C. (2018) Evaluation and validation of large-eddy simulation sub-grid spray dispersion models using high-fidelity volume-of-fluid simulation data and engine combustion network experimental data, Int. J. Engine Res., 1468087418772219. [Google Scholar]
  • Pozorski J., Apte S.V. (2009) Filtered particle tracking in isotropic turbulence and stochastic modeling of subgrid-scale dispersion, Int. J. Multiphase Flow 35, 2, 118–128. [CrossRef] [Google Scholar]
  • Bini M., Jones W.P. (2007) Particle acceleration in turbulent flows: A class of non-linear stochastic models for intermittency and heavy tailed pdfs, Phys. Fluids 19, 3, 035104. [CrossRef] [Google Scholar]
  • Bini M., Jones W.P. (2008) Large eddy simulation of particle laden turbulent flows, J. Fluid Mech. 614, 207–252. [Google Scholar]
  • Kuznetsov V.R., Sabel’nikov V.A. (1990) Turbulence and combustion, Hemispher Publishing Co-orporation, Washington, DC. [Google Scholar]
  • Zamansky R., Vinkovic I., Gorokhovski M. (2011) Acceleration statistics of solid particles in turbulent channel flow, Phys. Fluids 23, 11, 113304. [CrossRef] [Google Scholar]
  • Zamansky R., Vinkovic I., Gorokhovski M. (2013) Acceleration in turbulent channel flow: Universalities in statistics, subgrid stochastic models and an application, J. Fluid Mech. 721, 627–668. [Google Scholar]
  • Gorokhovski M., Zamansky R. (2018) Modeling the effects of small turbulent scales on the drag force for particles below and above the Kolmogorov scale, Phys. Rev. Fluids 3, 3, 034602. [Google Scholar]
  • Gorokhovski M., Zamansky R. (2014) Lagrangian simulation of large and small inertial particles in a high Reynolds number flow: Stochastic simulation of subgrid turbulence/particle interactions, in: Center for Turbulence Research, Proceedings of the Summer Program, pp. 37–46. [Google Scholar]
  • Barge A., Gorokhovski M. (2019) Accelerations in stationary turbulence under homogeneous shear: DNS, subsequent sub-grid stochastic models and application for inertial particle dynamics, J. Fluid Mech. (in preparation). [Google Scholar]
  • Sabelnikov V., Barge A., Gorokhovski M. (2019) Stochastic modeling of fluid acceleration on residual scales and dynamics of suspended inertial particles in turbulence, Phys. Rev. Fluids 4, 4, 044301. [Google Scholar]
  • Qureshi N.M., Arrieta U., Baudet C., Cartellier A., Gagne Y., Bourgoin M. (2008) Acceleration statistics of inertial particles in turbulent flow, Eur. Phys. J. B 66, 4, 531–536. [EDP Sciences] [Google Scholar]
  • Qureshi N.M., Bourgoin M., Baudet C., Cartellier A., Gagne Y. (2007) Turbulent transport of material particles: An experimental study of finite size effects, Phys. Rev. Lett. 99, 18, 184502. [CrossRef] [PubMed] [Google Scholar]
  • Pope S.B., Chen Y.L. (1990) The velocity-dissipation probability density function model for turbulent flows, Phys. Fluids A: Fluid Dyn. 2, 8, 1437–1449. [CrossRef] [Google Scholar]
  • Sabelnikov V., Chtab-Desportes A., Gorokhovski M. (2011) New sub-grid stochastic acceleration model in LES of high-Reynolds-number flows, Eur. Phys. J. B 80, 177. [EDP Sciences] [Google Scholar]
  • Pickett L.M., Genzale C.L., Bruneaux G., Malbec L.M., Hermant L., Christiansen C., Schramm J. (2010) Comparison of diesel spray combustion in different high-temperature, high-pressure facilities, SAE Int. J. Engines 3, 2, 156–181. [CrossRef] [Google Scholar]
  • Payri R., Viera J.P., Gopalakrishnan V., Szymkowicz P.G. (2016) The effect of nozzle geometry over internal flow and spray formation for three different fuels, Fuel 183, 20–33. [CrossRef] [Google Scholar]
  • Kitaguchi K., Fujii T., Hatori S., Hori T., Senda J. (2014) Effect of breakup model on large-eddy simulation of diesel spray evolution under high back pressures, Int. J. Engine Res. 15, 5, 522–538. [CrossRef] [Google Scholar]
  • Fujimoto H., Tsukasa H.O.R.I., Senda J. (2009) Effect of breakup model on diesel spray structure simulated by large eddy simulation (No. 2009-24-0024). SAE Technical Paper. [Google Scholar]
  • Wehrfritz A., Vuorinen V., Kaario O., Larmi M. (2013) Large eddy simulation of high-velocity fuel sprays: Studying mesh resolution and breakup model effects for spray A, Atomization Sprays 23, 5, 419–442. [CrossRef] [Google Scholar]
  • Patterson M.A., Reitz R.D. (1998) Modeling the effects of fuel spray characteristics on diesel engine combustion and emission (No. 980131). SAE Technical Paper. [Google Scholar]
  • Hori T., Kuge T., Senda J., Fujimoto H. (2008) Effect of convective schemes on LES of fuel spray by use of KIVALES (No. 2008-01-0930). SAE Technical Paper. [Google Scholar]
  • Vogiatzaki K., Crua C., Morgan R., Heikal M. (2017) A study of the controlling parameters of fuel air mixture formation for ECN Spray A. [Google Scholar]
  • Naber J.D., Siebers D. (1996) Effects of gas density and vaporization on penetration and dispersion of Diesel sprays, SAE Technical Paper 960034 105, 412, 82–111. [Google Scholar]
  • Mordant N., Delour J., Léveque E., Arnéodo A., Pinton J.F. (2002) Long time correlations in Lagrangian dynamics: A key to intermittency in turbulence, Phys. Rev. Lett. 89, 25, 254502. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Mordant N., Crawford A.M., Bodenschatz E. (2004) Three-dimensional structure of the Lagrangian acceleration in turbulent flows, Phys. Rev. Lett. 93, 21, 214501. [CrossRef] [PubMed] [Google Scholar]
  • Voth G.A., La Porta A., Crawford A.M., Alexander J., Bodenschatz E. (2002) Measurement of particle accelerations in fully developed turbulence, J. Fluid Mech. 469, 121–160. [Google Scholar]
  • Yeung P.K., Pope S.B. (1989) Lagrangian statistics from direct numerical simulations of isotropic turbulence, J. Fluid Mech. 207, 531–586. [Google Scholar]
  • Yeung P.K., Pope S.B., Lamorgese A.G., Donzis D.A. (2006) Acceleration and dissipation statistics of numerically simulated isotropic turbulence, Phys. Fluids 18, 065103. [CrossRef] [Google Scholar]
  • Toschi F., Bodenschatz E. (2009) Lagrangian properties of particles in turbulence, Ann. Rev. Fluid Mech. 41, 1, 375–404. [NASA ADS] [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.