Dossier LES4ICE’18 : LES for Internal Combustion Engine Flows Conference
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
Dossier LES4ICE’18 : LES for Internal Combustion Engine Flows Conference
Article Number 60
Number of page(s) 11
Published online 27 June 2019
  • Durand P., Gorokhovski M., Borghi R. (1999) An application of the probability density function model to diesel engine combustion, Combust. Sci. Technol. 144, 1–6, 47–78. [Google Scholar]
  • Sabel'nikov V., Gorokhovski M., Baricault N. (2006) The extended iem mixing model in the framework of the composition pdf approach: Applications to diesel spray combustion, Combust. Theory Modell. 10, 1, 155–169. [CrossRef] [Google Scholar]
  • Elghobashi S., Truesdell G.C. (1993) On the two-way interaction between homogeneous turbulence and dispersed solid particles. I: Turbulence modification, Phys. Fluids A: Fluid Dyn. 5, 7, 1790–1801. [CrossRef] [Google Scholar]
  • Ferrante A., Elghobashi S. (2003) On the physical mechanisms of two-way coupling in particle-laden isotropic turbulence, Phys. Fluids 15, 2, 315–329. [CrossRef] [Google Scholar]
  • Truesdell G.C., Elghobashi S. (1994) On the two-way interaction between homogeneous turbulence and dispersed solid particles. II. Particle dispersion, Phys. Fluids 6, 3, 1405–1407. [CrossRef] [Google Scholar]
  • Squires K.D., Eaton J.K. (1991) Preferential concentration of particles by turbulence, Phys. Fluids A: Fluid Dyn. 3, 5, 1169–1178. [NASA ADS] [CrossRef] [Google Scholar]
  • Rouson D.W., Eaton J.K. (2001) On the preferential concentration of solid particles in turbulent channel flow, J. Fluid Mech. 428, 149–169. [Google Scholar]
  • Toschi F., Bec J., Biferale L., Boffetta G., Celani A., Cencini M., Lanotte A.S., Musacchio S. (2008) Acceleration statistics of inertial particles from high resolution DNS turbulence, in: IUTAM Symposium on Computational Physics and New Perspectives in Turbulence, Springer, Dordrecht, pp. 73–78. [Google Scholar]
  • Cencini M., Bec J., Biferale L., Boffetta G., Celani A., Lanotte A.S., Toschi F. (2006) Dynamics and statistics of heavy particles in turbulent flows, J. Turbul. 7, N36. [CrossRef] [Google Scholar]
  • Smagorinsky J. (1963) General circulation experiments with the primitive equations: I. The basic experiment, Mon. Weather Rev. 91, 3, 99–164. [Google Scholar]
  • Yoshizawa A., Horiuti K. (1985) A statistically-derived subgrid-scale kinetic energy model for the large-eddy simulation of turbulent flows, J. Phys. Soc. Jpn. 54, 8, 2834–2839. [CrossRef] [Google Scholar]
  • Germano M., Piomelli U., Moin P., Cabot W.H. (1991) A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A: Fluid Dyn. 3, 7, 1760–1765. [Google Scholar]
  • Chumakov S.G., Rutland C.J. (2005) Dynamic structure subgrid-scale models for large eddy simulation, Int. J. Num. Methods Fluids 47, 8–9, 911–923. [CrossRef] [Google Scholar]
  • Rutland C.J. (2011) Large-eddy simulations for internal combustion engines – A review, Int. J. Engine Res. 12, 5, 421–451. [CrossRef] [EDP Sciences] [Google Scholar]
  • Bharadwaj N., Rutland C.J., Chang S.M. (2009) Large eddy simulation modelling of spray-induced turbulence effects, Int. J. Engine Res. 10, 2, 97–119. [CrossRef] [Google Scholar]
  • Bharadwaj N., Rutland C.J. (2010) A large-eddy simulation study of sub-grid two-phase interaction in particle-laden flows and diesel engine sprays, Atomization Sprays 20, 8. [Google Scholar]
  • Amsden A.A., Butler T.D., O’Rourke P.J. (1987) The KIVA-II computer program for transient multidimensional chemically reactive flows with sprays, SAE Trans. 373–383. [Google Scholar]
  • Tsang C.W., Kuo C.W., Trujillo M., Rutland C. (2018) Evaluation and validation of large-eddy simulation sub-grid spray dispersion models using high-fidelity volume-of-fluid simulation data and engine combustion network experimental data, Int. J. Engine Res., 1468087418772219. [Google Scholar]
  • Pozorski J., Apte S.V. (2009) Filtered particle tracking in isotropic turbulence and stochastic modeling of subgrid-scale dispersion, Int. J. Multiphase Flow 35, 2, 118–128. [CrossRef] [Google Scholar]
  • Bini M., Jones W.P. (2007) Particle acceleration in turbulent flows: A class of non-linear stochastic models for intermittency and heavy tailed pdfs, Phys. Fluids 19, 3, 035104. [CrossRef] [Google Scholar]
  • Bini M., Jones W.P. (2008) Large eddy simulation of particle laden turbulent flows, J. Fluid Mech. 614, 207–252. [Google Scholar]
  • Kuznetsov V.R., Sabel’nikov V.A. (1990) Turbulence and combustion, Hemispher Publishing Co-orporation, Washington, DC. [Google Scholar]
  • Zamansky R., Vinkovic I., Gorokhovski M. (2011) Acceleration statistics of solid particles in turbulent channel flow, Phys. Fluids 23, 11, 113304. [CrossRef] [Google Scholar]
  • Zamansky R., Vinkovic I., Gorokhovski M. (2013) Acceleration in turbulent channel flow: Universalities in statistics, subgrid stochastic models and an application, J. Fluid Mech. 721, 627–668. [Google Scholar]
  • Gorokhovski M., Zamansky R. (2018) Modeling the effects of small turbulent scales on the drag force for particles below and above the Kolmogorov scale, Phys. Rev. Fluids 3, 3, 034602. [Google Scholar]
  • Gorokhovski M., Zamansky R. (2014) Lagrangian simulation of large and small inertial particles in a high Reynolds number flow: Stochastic simulation of subgrid turbulence/particle interactions, in: Center for Turbulence Research, Proceedings of the Summer Program, pp. 37–46. [Google Scholar]
  • Barge A., Gorokhovski M. (2019) Accelerations in stationary turbulence under homogeneous shear: DNS, subsequent sub-grid stochastic models and application for inertial particle dynamics, J. Fluid Mech. (in preparation). [Google Scholar]
  • Sabelnikov V., Barge A., Gorokhovski M. (2019) Stochastic modeling of fluid acceleration on residual scales and dynamics of suspended inertial particles in turbulence, Phys. Rev. Fluids 4, 4, 044301. [Google Scholar]
  • Qureshi N.M., Arrieta U., Baudet C., Cartellier A., Gagne Y., Bourgoin M. (2008) Acceleration statistics of inertial particles in turbulent flow, Eur. Phys. J. B 66, 4, 531–536. [EDP Sciences] [Google Scholar]
  • Qureshi N.M., Bourgoin M., Baudet C., Cartellier A., Gagne Y. (2007) Turbulent transport of material particles: An experimental study of finite size effects, Phys. Rev. Lett. 99, 18, 184502. [CrossRef] [PubMed] [Google Scholar]
  • Pope S.B., Chen Y.L. (1990) The velocity-dissipation probability density function model for turbulent flows, Phys. Fluids A: Fluid Dyn. 2, 8, 1437–1449. [CrossRef] [Google Scholar]
  • Sabelnikov V., Chtab-Desportes A., Gorokhovski M. (2011) New sub-grid stochastic acceleration model in LES of high-Reynolds-number flows, Eur. Phys. J. B 80, 177. [EDP Sciences] [Google Scholar]
  • Pickett L.M., Genzale C.L., Bruneaux G., Malbec L.M., Hermant L., Christiansen C., Schramm J. (2010) Comparison of diesel spray combustion in different high-temperature, high-pressure facilities, SAE Int. J. Engines 3, 2, 156–181. [CrossRef] [Google Scholar]
  • Payri R., Viera J.P., Gopalakrishnan V., Szymkowicz P.G. (2016) The effect of nozzle geometry over internal flow and spray formation for three different fuels, Fuel 183, 20–33. [CrossRef] [Google Scholar]
  • Kitaguchi K., Fujii T., Hatori S., Hori T., Senda J. (2014) Effect of breakup model on large-eddy simulation of diesel spray evolution under high back pressures, Int. J. Engine Res. 15, 5, 522–538. [CrossRef] [Google Scholar]
  • Fujimoto H., Tsukasa H.O.R.I., Senda J. (2009) Effect of breakup model on diesel spray structure simulated by large eddy simulation (No. 2009-24-0024). SAE Technical Paper. [Google Scholar]
  • Wehrfritz A., Vuorinen V., Kaario O., Larmi M. (2013) Large eddy simulation of high-velocity fuel sprays: Studying mesh resolution and breakup model effects for spray A, Atomization Sprays 23, 5, 419–442. [CrossRef] [Google Scholar]
  • Patterson M.A., Reitz R.D. (1998) Modeling the effects of fuel spray characteristics on diesel engine combustion and emission (No. 980131). SAE Technical Paper. [Google Scholar]
  • Hori T., Kuge T., Senda J., Fujimoto H. (2008) Effect of convective schemes on LES of fuel spray by use of KIVALES (No. 2008-01-0930). SAE Technical Paper. [Google Scholar]
  • Vogiatzaki K., Crua C., Morgan R., Heikal M. (2017) A study of the controlling parameters of fuel air mixture formation for ECN Spray A. [Google Scholar]
  • Naber J.D., Siebers D. (1996) Effects of gas density and vaporization on penetration and dispersion of Diesel sprays, SAE Technical Paper 960034 105, 412, 82–111. [Google Scholar]
  • Mordant N., Delour J., Léveque E., Arnéodo A., Pinton J.F. (2002) Long time correlations in Lagrangian dynamics: A key to intermittency in turbulence, Phys. Rev. Lett. 89, 25, 254502. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  • Mordant N., Crawford A.M., Bodenschatz E. (2004) Three-dimensional structure of the Lagrangian acceleration in turbulent flows, Phys. Rev. Lett. 93, 21, 214501. [CrossRef] [PubMed] [Google Scholar]
  • Voth G.A., La Porta A., Crawford A.M., Alexander J., Bodenschatz E. (2002) Measurement of particle accelerations in fully developed turbulence, J. Fluid Mech. 469, 121–160. [Google Scholar]
  • Yeung P.K., Pope S.B. (1989) Lagrangian statistics from direct numerical simulations of isotropic turbulence, J. Fluid Mech. 207, 531–586. [Google Scholar]
  • Yeung P.K., Pope S.B., Lamorgese A.G., Donzis D.A. (2006) Acceleration and dissipation statistics of numerically simulated isotropic turbulence, Phys. Fluids 18, 065103. [CrossRef] [Google Scholar]
  • Toschi F., Bodenschatz E. (2009) Lagrangian properties of particles in turbulence, Ann. Rev. Fluid Mech. 41, 1, 375–404. [NASA ADS] [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.