- Reitz R.D. (2013) Directions in internal combustion engine research, Combust. Flame 160, 1, 1–8. [Google Scholar]
- Heywood J.B. (1988) Internal combustion engine fundamentals, McGraw-Hill, New York. [Google Scholar]
- Wiedenhoefer J.F., Reitz R.D. (2003) Multidimensional modeling of the effects of radiation and soot deposition in heavy-duty diesel engines, SAE Trans. 112, 3, 784–804. [Google Scholar]
- Yoshikawa T., Reitz R.D. (2009) Effect of radiation on diesel engine combustion and heat transfer, J. Therm. Sci. Technol. 4, 1, 86–97. [CrossRef] [Google Scholar]
- Borman G., Nishiwaki K. (1987) Internal-combustion engine heat transfer, Prog. Energy Combust. Sci. 13, 1, 1–46. [Google Scholar]
- Torregrosa J., Olmeda P.C., Romero C.A., Térmicos M., Valencia U.P.D.E., De Vera C. (2008) Revising engine heat transfer 1, Ann. Fac. Eng. Hunedoara 6, 3, 245–265. [Google Scholar]
- Fernandez S.F., Paul C., Sircar A., Imren A., Haworth D.C., Roy S., Modest M.F. (2018) Soot and spectral radiation modeling for high-pressure turbulent spray flames, Combust. Flame 190, 402–415. [Google Scholar]
- Paul C., Sircar A., Fernandez S.F., Imren A., Haworth D.C., Roy S.P., Ge W., Modest M.F. (2017) “Modeling radiative heat transfer and turbulence-radiation interactions in engines”, in U.S., Nat. Combust. Meet. 10, 1–6. [Google Scholar]
- Paul C., Haworth D.C., Modest M.F. (2019) A simplified CFD model for spectral radiative heat transfer in high-pressure hydrocarbon-air combustion systems, Proc. Combust. Inst. 37, 4617–4624. [Google Scholar]
- Modest M.F., Haworth D.C. (2016) Radiative heat transfer in turbulent combustion systems: Theory and applications, Springer, Berlin, Germany. [CrossRef] [Google Scholar]
- Goldenstein C.S., Spearrin R.M., Jeffries J.B., Hanson R.K. (2017) Infrared laser-absorption sensing for combustion gases, Prog. Energy Combust. Sci. 60, 132–176. [Google Scholar]
- Rein K.D., Sanders S.T., Lowry S.R., Jiang E.Y., Workman J.J. (2008) In-cylinder Fourier-transform infrared spectroscopy, Meas. Sci. Technol. 19, 4, 1–5. [Google Scholar]
- Rein K., Sanders S., Bartula R. (2009) Interferometric techniques for crank-angle resolved measurements of gas spectra in engines, SAE Technical Paper (No. 2009-01-0863), 1–7. [Google Scholar]
- Rein K.D., Sanders S.T. (2010) Fourier-transform absorption spectroscopy in reciprocating engines, Appl. Opt. 49, 25, 4728–4734. [CrossRef] [PubMed] [Google Scholar]
- Sick V., Henrion L., Mazacioglu A., Gross M.C. (2018) Time-resolved infrared imaging and spectroscopy for engine diagnostics, in: 13th AVL Intl. Symp. on Propulsion Diagnostics Proceedings, AVL GmbH, Austria. [Google Scholar]
- Schiffmann P., Reuss D.L., Sick V. (2018) Empirical investigation of spark-ignited flame-initiation cycle-to-cycle variability in a homogeneous charge reciprocating engine, Int. J. Engine Res. 19, 5, 491–508. [CrossRef] [Google Scholar]
- Humphreys C.J., Paul E. (1970) Interferometric Wavelength Determinations in the First Spectrum of 136Xe, J. Opt. Soc. Am. 60, 10, 1302–1310. [Google Scholar]
- Ma P.C., Greene M., Sick V., Ihme M. (2017) Non-equilibrium wall-modeling for internal combustion engine simulations with wall heat transfer, Int. J. Engine Res. 18, 15–25. [CrossRef] [Google Scholar]
- Oude Nijeweme D.J., Kok J.B.W., Stone C.R., Wyszynski L. (2001) Unsteady in-cylinder heat transfer in a spark ignition engine: Experiments and modelling, Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 215, 6, 747–760. [CrossRef] [Google Scholar]
- Herzberg G. (1945) Infrared and Raman spectra of polyatomic molecules, D. Van Nostrand Company, New York City. [Google Scholar]
- Shekhawat Y., Haworth D.C., d’Adamo A., Berni F., Fontanesi S., Schiffmann P., Reuss D.L., Sick V. (2017) An experimental and simulation study of early flame development in a homogeneous-charge spark-ignition engine, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 72, 32. [Google Scholar]
- Weller H., Greenshields C., de Rouvray C., OpenFoam. (2011) The OpenFOAM Foundation. [Online]. Available: https://openfoam.org/ [Google Scholar]
- Paul C., Ferreyro-Fernandez S., Haworth D.C., Roy S., Modest M.F. (2019) A detailed modeling study of radiative heat transfer in a heavy-duty diesel engine, Combust. Flame 200, 325–341. [Google Scholar]
- Rothman L.S., Gordon I.E., Barber R.J., Dothe H., Gamache R.R., Goldman A., Perevalov V.I., Tashkun S.A., Tennyson J. (2010) HITEMP, the high-temperature molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transf. 111, 15, 2139–2150. [Google Scholar]
Numéro |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
Dossier LES4ICE’18 : LES for Internal Combustion Engine Flows Conference
|
|
---|---|---|
Numéro d'article | 61 | |
Nombre de pages | 14 | |
DOI | https://doi.org/10.2516/ogst/2019030 | |
Publié en ligne | 1 juillet 2019 |
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.