Dossier: Characterisation and Modeling of Low Permeability Media and Nanoporous Materials
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Numéro 4, Juillet–Août 2016
Dossier: Characterisation and Modeling of Low Permeability Media and Nanoporous Materials
Numéro d'article 50
Nombre de pages 17
Publié en ligne 23 juin 2016
  • Bernabé Y., Li M., Maineult A. (2010) Permeability and pore connectivity: a new model based on network simulations, J. Geophys. Res. 115, B10203. [CrossRef] [Google Scholar]
  • Bernabé Y., Zamora M., Li M., Maineult A., Tang Y.B. (2011) Pore connectivity, permeability and electrical formation factor: a new model and comparison to experimental data, J. Geophys. Res. 116, B11204. [Google Scholar]
  • Bernabé Y., Maineult A.(2015) Physics of porous media: fluid flow through porous media, Treatise on Geophysics, 2nd ed., Vol. 11, Resources in the Near-Surface Earth, Schubert G. (ed.) , pp. 19–41. [Google Scholar]
  • Berryman J.G. (1992a) Effective stress for transport properties of inhomogeneous porous rock, J. Geophys. Res. - Sol. Earth 97, 17409–17424. [Google Scholar]
  • Berryman J.G. (1992b) Exact effective-stress rules in rock mechanics, Phys. Rev. A 46, 6, 3307–3311. [CrossRef] [Google Scholar]
  • Berryman J.G. (1993) Effective-stress rules for pore-fluid transport in rocks containing two minerals, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 30, 1165–1168. [Google Scholar]
  • Biella G., Lozej A., Tabacco I. (1983) Experimental study of some hydrogeophysical properties of unconsolidated porous media, Ground Water 21, 741–751. [CrossRef] [Google Scholar]
  • Biella G., Tabacco I. (1981) The influence of grain size on the relations between resistivity, porosity and permeability in unconsolidated formations, Boll. Geof. Teor. Appl. 23, 43–58. [Google Scholar]
  • Blair S.C., Berge P.A., Berryman J.G. (1996) Using two-point correlation functions to characterize microgeometry and estimate permeabilities of sandstones and porous glass, J. Geophys. Res. - Sol. Earth 101, 20359–20375. [CrossRef] [Google Scholar]
  • Bourbié T., Zinszner B. (1985) Hydraulic and acoustic properties as a function of porosity in Fontainebleau sandstone, J. Geophys. Res. - Sol. Earth 90, 11524–11532. [Google Scholar]
  • Clennell M.B. (1997) Tortuosity: a guide through the maze, Geol. Soc. London, Spec. Pub. 122, 299–344. [CrossRef] [Google Scholar]
  • Coelho D., Thovert J.-F., Adler P.M. (1997) Geometrical and transport properties of random packings of spheres and aspherical particles, Phys. Rev. E 55, 1959–1978. [CrossRef] [Google Scholar]
  • Doyen P.M. (1988) Permeability, conductivity, and pore geometry of sandstone, J. Geophys. Res. - Sol. Earth 93, 7729–7740. [CrossRef] [Google Scholar]
  • Fischmeister H.F., Arzt E., Olsson L.R. (1978) Particle deformation and sliding during compaction of spherical powders: a study by quantitative metallography, Powder Metallurgy 4, 179–187. [CrossRef] [Google Scholar]
  • Fredrich J.T., Greaves K.H., Martin J.W. (1993) Pore geometry and transport properties of Fontainebleau sandstone, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 30, 691–697. [CrossRef] [Google Scholar]
  • Glover P.W.J., Hole M.J., Pous J. (2000) A modified Archie’s law for two conducting phases, Earth Planet Sci. Lett. 180, 369–383. [CrossRef] [Google Scholar]
  • Glover P.W.J., Zadjali I.I., Frew K.A. (2006) Permeability prediction from MICP and NMR data using an electrokinetic approach, Geophys. 71, F49–F60. [CrossRef] [Google Scholar]
  • Glover P.W.J. (2009) What is the cementation exponent? A new interpretation, The Leading Edge 28, 82–85. [CrossRef] [Google Scholar]
  • Glover P.W.J., Walker E. (2009) Grain-size to effective pore-size transformation derived from electrokinetic theory, Geophys. 74, E17–E29. [CrossRef] [Google Scholar]
  • Glover P.W.J., Déry N. (2010) Streaming potential coupling coefficient of quartz glass bead packs: dependence on grain diameter, pore size, and pore throat radius, Geophys. 75, F225–F241. [CrossRef] [Google Scholar]
  • Guyon E., Oger L., Plona T.J. (1987) Transport properties in sintered porous media composed of two particle sizes, J. Phys. D: Appl. Phys. 20, 1637–1644. [CrossRef] [Google Scholar]
  • Li S.X., Pengra D.B., Wong P.-z. (1995) Onsager’s reciprocal relation and the hydraulic permeability of porous media, Phys. Rev. E 51, 5748–5751. [CrossRef] [Google Scholar]
  • Lindquist W.B., Venkatarangan A., Dunsmuir J., Wong T.-f. (2000) Pore and throat size distributions measured from synchrotron X-ray tomographic images of Fontainebleau sandstones, J. Geophys. Res. - Sol. Earth 105, 21509–21527. [Google Scholar]
  • Paterson M.S. (1983) The equivalent channel model for permeability and resistivity in fluid-saturated rocks – a reappraisal, Mech. Mater. 2, 345–352. [CrossRef] [Google Scholar]
  • Petford N., Davidson G., Miller J.A. (2001) Investigation of the petrophysical properties of a porous sandstone sample using confocal scanning laser microscopy, Pet. Geosci. 7, 99–105. [CrossRef] [Google Scholar]
  • Revil A., Cathles L.M. (1999) Permeability of shaly sands, Water Resour. Res. 35, 651–662. [Google Scholar]
  • Revil A., Glover P.W.J. (1997) Theory of ionic surface electrical conduction in porous media, Phys. Rev. B 55, 1757–1773. [CrossRef] [Google Scholar]
  • Revil A., Glover P.W.J. (1998) Nature of surface electrical conductivity in natural sands, sandstones and clays, Geophys. Res. Lett. 25, 691–694. [CrossRef] [Google Scholar]
  • Revil A., Kessouri P., Torres-Verdin C. (2014) Electrical conductivity, induced polarization, and permeability of the Fontainebleau sandstone, Geophys. 79, D301–D318. [CrossRef] [Google Scholar]
  • Roberts J.N., Schwartz L.M. (1985) Grain consolidation and electrical conductivity in porous media, Phys. Rev. B 31, 5990–5997. [CrossRef] [Google Scholar]
  • Schwartz L.M., Kimminau S. (1987) Analysis of electrical conduction in the grain consolidation model, Geophys. 52, 1402–1411. [CrossRef] [Google Scholar]
  • Walsh J.B., Brace W.F. (1984) The effect of pressure on porosity and the transport properties of rock, J. Geophys. Res. - Sol. Earth 89, 9425–9431. [Google Scholar]
  • Wong P.-z., Koplik J., Tomanic J. (1984) Conductivity and permeability of rocks, Phys. Rev. B 30, 6606–6614. [CrossRef] [Google Scholar]
  • Yale D.P. (1984) Network modeling of flow, storage and deformation in porous rocks, Ph.D. Thesis, Stanford University. [Google Scholar]
  • Zhu W., David C., Wong T.-f. (1995) Network modeling of permeability evolution during cementation and hot isostatic pressing, J. Geophys. Res. 100, 15451–15464. [CrossRef] [Google Scholar]
  • Zhu W., Evans B., Bernabé Y. (1999) Densification and permeability reduction in hot-pressed calcite: a kinetic model, J. Geophys. Res. 104, 25501–25511. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.