Dossier: Characterisation and Modeling of Low Permeability Media and Nanoporous Materials
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Number 4, Juillet–Août 2016
Dossier: Characterisation and Modeling of Low Permeability Media and Nanoporous Materials
Article Number 50
Number of page(s) 17
DOI https://doi.org/10.2516/ogst/2015037
Published online 23 June 2016
  • Bernabé Y., Li M., Maineult A. (2010) Permeability and pore connectivity: a new model based on network simulations, J. Geophys. Res. 115, B10203. [CrossRef] [Google Scholar]
  • Bernabé Y., Zamora M., Li M., Maineult A., Tang Y.B. (2011) Pore connectivity, permeability and electrical formation factor: a new model and comparison to experimental data, J. Geophys. Res. 116, B11204. [Google Scholar]
  • Bernabé Y., Maineult A.(2015) Physics of porous media: fluid flow through porous media, Treatise on Geophysics, 2nd ed., Vol. 11, Resources in the Near-Surface Earth, Schubert G. (ed.) , pp. 19–41. [Google Scholar]
  • Berryman J.G. (1992a) Effective stress for transport properties of inhomogeneous porous rock, J. Geophys. Res. - Sol. Earth 97, 17409–17424. [Google Scholar]
  • Berryman J.G. (1992b) Exact effective-stress rules in rock mechanics, Phys. Rev. A 46, 6, 3307–3311. [CrossRef] [Google Scholar]
  • Berryman J.G. (1993) Effective-stress rules for pore-fluid transport in rocks containing two minerals, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 30, 1165–1168. [Google Scholar]
  • Biella G., Lozej A., Tabacco I. (1983) Experimental study of some hydrogeophysical properties of unconsolidated porous media, Ground Water 21, 741–751. [CrossRef] [Google Scholar]
  • Biella G., Tabacco I. (1981) The influence of grain size on the relations between resistivity, porosity and permeability in unconsolidated formations, Boll. Geof. Teor. Appl. 23, 43–58. [Google Scholar]
  • Blair S.C., Berge P.A., Berryman J.G. (1996) Using two-point correlation functions to characterize microgeometry and estimate permeabilities of sandstones and porous glass, J. Geophys. Res. - Sol. Earth 101, 20359–20375. [CrossRef] [Google Scholar]
  • Bourbié T., Zinszner B. (1985) Hydraulic and acoustic properties as a function of porosity in Fontainebleau sandstone, J. Geophys. Res. - Sol. Earth 90, 11524–11532. [Google Scholar]
  • Clennell M.B. (1997) Tortuosity: a guide through the maze, Geol. Soc. London, Spec. Pub. 122, 299–344. [CrossRef] [Google Scholar]
  • Coelho D., Thovert J.-F., Adler P.M. (1997) Geometrical and transport properties of random packings of spheres and aspherical particles, Phys. Rev. E 55, 1959–1978. [CrossRef] [Google Scholar]
  • Doyen P.M. (1988) Permeability, conductivity, and pore geometry of sandstone, J. Geophys. Res. - Sol. Earth 93, 7729–7740. [CrossRef] [Google Scholar]
  • Fischmeister H.F., Arzt E., Olsson L.R. (1978) Particle deformation and sliding during compaction of spherical powders: a study by quantitative metallography, Powder Metallurgy 4, 179–187. [CrossRef] [Google Scholar]
  • Fredrich J.T., Greaves K.H., Martin J.W. (1993) Pore geometry and transport properties of Fontainebleau sandstone, Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. 30, 691–697. [CrossRef] [Google Scholar]
  • Glover P.W.J., Hole M.J., Pous J. (2000) A modified Archie’s law for two conducting phases, Earth Planet Sci. Lett. 180, 369–383. [CrossRef] [Google Scholar]
  • Glover P.W.J., Zadjali I.I., Frew K.A. (2006) Permeability prediction from MICP and NMR data using an electrokinetic approach, Geophys. 71, F49–F60. [CrossRef] [Google Scholar]
  • Glover P.W.J. (2009) What is the cementation exponent? A new interpretation, The Leading Edge 28, 82–85. [CrossRef] [Google Scholar]
  • Glover P.W.J., Walker E. (2009) Grain-size to effective pore-size transformation derived from electrokinetic theory, Geophys. 74, E17–E29. [CrossRef] [Google Scholar]
  • Glover P.W.J., Déry N. (2010) Streaming potential coupling coefficient of quartz glass bead packs: dependence on grain diameter, pore size, and pore throat radius, Geophys. 75, F225–F241. [CrossRef] [Google Scholar]
  • Guyon E., Oger L., Plona T.J. (1987) Transport properties in sintered porous media composed of two particle sizes, J. Phys. D: Appl. Phys. 20, 1637–1644. [CrossRef] [Google Scholar]
  • Li S.X., Pengra D.B., Wong P.-z. (1995) Onsager’s reciprocal relation and the hydraulic permeability of porous media, Phys. Rev. E 51, 5748–5751. [CrossRef] [Google Scholar]
  • Lindquist W.B., Venkatarangan A., Dunsmuir J., Wong T.-f. (2000) Pore and throat size distributions measured from synchrotron X-ray tomographic images of Fontainebleau sandstones, J. Geophys. Res. - Sol. Earth 105, 21509–21527. [Google Scholar]
  • Paterson M.S. (1983) The equivalent channel model for permeability and resistivity in fluid-saturated rocks – a reappraisal, Mech. Mater. 2, 345–352. [CrossRef] [Google Scholar]
  • Petford N., Davidson G., Miller J.A. (2001) Investigation of the petrophysical properties of a porous sandstone sample using confocal scanning laser microscopy, Pet. Geosci. 7, 99–105. [CrossRef] [Google Scholar]
  • Revil A., Cathles L.M. (1999) Permeability of shaly sands, Water Resour. Res. 35, 651–662. [Google Scholar]
  • Revil A., Glover P.W.J. (1997) Theory of ionic surface electrical conduction in porous media, Phys. Rev. B 55, 1757–1773. [CrossRef] [Google Scholar]
  • Revil A., Glover P.W.J. (1998) Nature of surface electrical conductivity in natural sands, sandstones and clays, Geophys. Res. Lett. 25, 691–694. [CrossRef] [Google Scholar]
  • Revil A., Kessouri P., Torres-Verdin C. (2014) Electrical conductivity, induced polarization, and permeability of the Fontainebleau sandstone, Geophys. 79, D301–D318. [CrossRef] [Google Scholar]
  • Roberts J.N., Schwartz L.M. (1985) Grain consolidation and electrical conductivity in porous media, Phys. Rev. B 31, 5990–5997. [CrossRef] [Google Scholar]
  • Schwartz L.M., Kimminau S. (1987) Analysis of electrical conduction in the grain consolidation model, Geophys. 52, 1402–1411. [CrossRef] [Google Scholar]
  • Walsh J.B., Brace W.F. (1984) The effect of pressure on porosity and the transport properties of rock, J. Geophys. Res. - Sol. Earth 89, 9425–9431. [Google Scholar]
  • Wong P.-z., Koplik J., Tomanic J. (1984) Conductivity and permeability of rocks, Phys. Rev. B 30, 6606–6614. [CrossRef] [Google Scholar]
  • Yale D.P. (1984) Network modeling of flow, storage and deformation in porous rocks, Ph.D. Thesis, Stanford University. [Google Scholar]
  • Zhu W., David C., Wong T.-f. (1995) Network modeling of permeability evolution during cementation and hot isostatic pressing, J. Geophys. Res. 100, 15451–15464. [CrossRef] [Google Scholar]
  • Zhu W., Evans B., Bernabé Y. (1999) Densification and permeability reduction in hot-pressed calcite: a kinetic model, J. Geophys. Res. 104, 25501–25511. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.