Dossier: Characterisation and Modeling of Low Permeability Media and Nanoporous Materials
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Numéro 4, Juillet–Août 2016
Dossier: Characterisation and Modeling of Low Permeability Media and Nanoporous Materials
Numéro d'article 51
Nombre de pages 16
DOI https://doi.org/10.2516/ogst/2016001
Publié en ligne 23 juin 2016
  • Davy C.A., Skoczylas F., Barnichon J.-D., Lebon P. (2007) Permeability of macro-cracked argillite under confinement: Gas and water testing, Physics and Chemistry of the Earth 32, 8–14, 667–680. [CrossRef] [Google Scholar]
  • Davy C.A. (2012) Gas migration through watersaturated argillite: a synthesis of experiments performed at LML. Presentation in GL Transfert de gaz, January. [Google Scholar]
  • Davy C.A. (2012) Self-sealing and self-healing of COx claystone. Clays in Natural and Engineered Barriers for Radioactive Waste Confinement, 5th International Meeting, October. [Google Scholar]
  • ANDRA (Agence Nationale pour la gestion des Déchets RAdioactifs) (2005) Dossier 2005 Argile: évaluation de la faisabilité du stockage géologique en formation argileuse profonde - rapport de synthèse. Available at: http://www.andra.fr. [Google Scholar]
  • Song Y., Davy C.A., Talandier J., Skoczylas F. (2016) On the nature of gas migration through COx claystone, Journal of Contaminant Hydrology, submitted. [Google Scholar]
  • Keller L.M., Holzer L., Wepf R., Gasser P. (2011) 3D geometry and topology of pore pathways in Opalinus clay: Implications for mass transport, Applied Clay Science 52, 85–95. [Google Scholar]
  • Keller L.M., Schuetz P., Erni R., Rossell M.D., Lucas F., Lucas M., Gasser P., Holzer L. (2013) Characterization of multi-scale microstructural features in Opalinus clay, Microporous and Mesoporous Materials 170, 83–94. [Google Scholar]
  • Song Y., Davy C.A., Troadec D., Blanchenet A.-M., Skoczylas F., Talandier J., Robinet J.C. (2015) Multiscale pore structure of COx claystone: Towards the prediction of fluid transport, Marine and Petroleum Geology 65, 63–85. [Google Scholar]
  • Desbois G., Urai J.L., Kukla P.A. (2009) Morphology of the pore space in claystones - evidence from BIB/FIB ion beam sectioning and cryo-SEM observations, E-Earth 4, 15–22. [Google Scholar]
  • Desbois G., Urai J.L., Pérez-Willard F., Radi Z., van Offern S., Burkart I., Kukla P.A., Wollenberg U. (2013) Argon broad ion beam tomography in a cryogenic scanning electron microscope: a novel tool for the investigation of representative microstructures in sedimentary rocks containing pore fluid, Journal of Microscopy 249, 3, 215–235. [CrossRef] [PubMed] [Google Scholar]
  • Desbois G., Urai J.L., Hemes S., Brassines S., De Craen M., Sillen X. (2014) Nanometer-scale pore fluid distribution and drying damage in preserved clay cores from belgian clay formations inferred by BIB-cryo-SEM, Engineering Geology 179, 117–131. [CrossRef] [Google Scholar]
  • Hemes S., Desbois G., Urai J.L., Schröppel B., Schwarz J.O. (2015) Multi-scale characterization of porosity in Boom Clay (HADES-level, Mol, Belgium) using a combination of X-ray µ-CT, 2D BIB-SEM and FIB-SEM tomography, Microporous & Mesoporous Materials 208, 1–20. [CrossRef] [Google Scholar]
  • Houben M.E., Desbois G., Urai J.L. (2013) Pore morphology and distribution in the Shaly facies of Opalinus clay (Mont Terri, Switzerland): Insights from representative 2D BIB–SEM investigations on mm to nm scale, Applied Clay Science 71, 82–97. [CrossRef] [Google Scholar]
  • Houben M.E., Desbois G., Urai J.L. (2014) A comparative study of representative 2D microstructures in Shaly and Sandy facies of Opalinus Clay (Mont Terri, Switzerland) inferred from BIB-SEM and MIP methods, Marine and Petroleum Engineering 49, 143–161. [CrossRef] [Google Scholar]
  • Keller L.M., Holzer L., Wepf R., Gasser P., Münch B., Marschall P. (2011) On the application of focused ion beam nanotomography in characterizing the 3D pore space geometry of Opalinus clay, Physics and Chemistry of the Earth, Parts A/B/C 36, 17–18, 1539–1544. [CrossRef] [Google Scholar]
  • Keller L.M., Holzer L., Schuetz P., Gasser P. (2013) Pore space relevant for gas permeability in Opalinus clay: Statistical analysis of homogeneity, percolation, and representative volume element, Journal of Geophysical Research: Solid Earth 118, 2799–2812. [CrossRef] [Google Scholar]
  • Robinet J.C., Sardini P., Coelho D., Parneix J.C., Prêt D., Sammartino S., Boller E., Altmann S. (2012) Effects of mineral distribution at mesoscopic scale on solute diffusion in a clay-rich rock: Example of the Callovo-Oxfordian mudstone (Bure, France), Water Resources Research 48, W05554, 1–17. [Google Scholar]
  • Yven B., Sammartino S., Geraud Y., Homand F., Villieras F. (2007) Mineralogy, texture and porosity of Callovo-Oxfordien argillites of the Meuse/Haute-Marne region (eastern Paris basin), Mémoires de la Société Géologique de France 178, 73–90. [Google Scholar]
  • IUPAC (International Union of Pure and Applied Chemistry). (1995) Recommendations, Pure Appl. Chem. 66, 1739. [Google Scholar]
  • Duveau G., Jahad S.M., Davy C.A., Skoczylas F., Shao J.-F., Talandier J., Granet S. (2011) Gas entry through water-saturated argillite: experimental and numerical approaches. Proceedings of the international conference 45th US Rock Mechanics Geomechanics Symposium ARMA, San Francisco, USA, 26-29th, June. [Google Scholar]
  • Egermann P., Lombard J.-M., Bretonnier P. (2006) A fast and accurate method to measure threshold capillary pressure of cap rocks under representative conditions. Paper SCA A46, 2006 SCA International Symposium, Trondheim, Sept. 18–22. [Google Scholar]
  • Hildenbrand A., Schlömer S., Krooss B.M. (2002) Gas breakthrough experiments on fine-grained sedimentary rocks, Geofluids 2, 1, 3–23. [CrossRef] [Google Scholar]
  • Horseman S.T., Harrington J.F., Sellin P. (1999) Gas migration in clay barriers, Engineering Geology 54, 139–149. [CrossRef] [Google Scholar]
  • Amann-Hildenbrand A., Ghanizadeh A., Krooss B.M. (2012) Transport properties of unconventional gas systems, Marine and Petroleum Geology 31, 1, 90–99. [CrossRef] [Google Scholar]
  • Cuss R., Harrington J. (2012) Evidence for dilatancy during the onset of gas flow. Presentation at the GL Transfert de gaz annual meeting, FORGE WP 4.1.1 E_ect of stress field and mechanical deformation on permeability and fracture self-sealing, January 26th. [Google Scholar]
  • Cuss R., Harrington J., Giot R., Auvray C. (2014) Experimental observations of mechanical dilation at the onset of gas flow in Callovo-Oxfordian claystone. Clays in Natural and Engineered Barriers for Radioactive Waste Confinement. Geological Society Special Publications: London, United Kingdom, Geological Society of London. [Google Scholar]
  • Harrington J.F., de la Vaissière R., Noy D.J., Cuss R.J., Talandier J. (2012) Gas flow in Callovo-Oxfordian claystone (COx): results from laboratory and field-scale measurements, Mineralogical Magazine 76, 8, 3303–3318. [CrossRef] [Google Scholar]
  • Marschall P., Horseman S., Gimmi Th. (2005) Characterisation of gas transport properties of the Opalinus clay, a potential host rock formation for radioactive waste disposal, Oil & Gas Science and Technology 60, 1, 121–139. [Google Scholar]
  • Zhang C.L., Rothfuchs T. (2008) Damage and sealing of clay rocks detected by measurements of gas permeability, Physics and Chemistry of the Earth 33, S363–S373. [CrossRef] [Google Scholar]
  • Gerard P., Harrington J.F., Charlier R., Collin F. (2014) Modelling of localised gas preferential pathways in claystone, International Journal of Rock Mechanics and Mining Sciences 67, 104–114. [CrossRef] [Google Scholar]
  • Song Y., Davy C.A., Troadec D., Bertier P., Skoczylas F. (2016) Understanding fluid transport through claystones from their 3D nanoscopic pore network, Microporous and Mesoporous Materials, under revisions. [Google Scholar]
  • Biswal B., Manwart C., Hilfer R. (1998) Three-dimensional local porosity analysis of porous media, Physica A 255, 221–241. [CrossRef] [Google Scholar]
  • Hilfer R. (1991) Geometric and dielectric characterization of porous media, Phys. Rev. B 44, 60. [CrossRef] [Google Scholar]
  • Holzer L., Münch B., Rizzi M., Wepf R., Marschall P., Graule T. (2010) 3D-microstructure analysis of hydrated bentonite with cryo-stabilized pore water, Applied Clay Science 47, 3, 330–342. [CrossRef] [Google Scholar]
  • Münch B., Holzer L. (2008) Contradicting geometrical concepts in pore size analysis attained with electron microscopy and mercury intrusion, Journal of the American Ceramic Society 91, 12, 4059–4067. [CrossRef] [Google Scholar]
  • Sato M., Bitter I., Bender M.A., Kaufman A.E., Nakajima M.(2000) TEASAR: Tree-structure extraction algorithm for accurate and robust skeletons. Computer Graphics and Applications, Proceedings. The Eighth Pacific Conference, pp. 281–449, IEEE. [Google Scholar]
  • Bitter I., Wan M., Kaufman A., Dachille F., Kreeger K., Liang Z., Wax M.(2004) Centerline and tree branch skeleton determination for virtual objects, US patent n. US20040109603 A. [Google Scholar]
  • Rosenfeld A., Pfaltz J.L. (1966) Sequential operations in digital picture processing, Journal of the Association for Computing Machinery 13, 4, 471–494. [CrossRef] [Google Scholar]
  • Suryanarayanan S., Gopinath A., Mallya Y., Shriram K.S., Joshi M.(2006) Automatic tracking of neuro vascular tree paths. Medical Imaging 2006: Image Processing, Reinhardt J.M., Pluim J.P.W. (eds), Proceedings of the SPIE, Vol. 6144, 61444N. [Google Scholar]
  • Lindquist W.B., Lee S.M., Coker D., Jones K., Spanne P. (1996) Medial axis analysis of void structure in three-dimensional tomographic images of porous media, J. Geophys. Res. 101B, 8297–8310. [Google Scholar]
  • Lindquist W.B., Venkatarangan A. (1999) Investigating 3D geometry of porous media from high resolution images, Phys. Chem. Earth (A) 25, 593–599. [CrossRef] [Google Scholar]
  • Lindquist W.B., Venkatarangan A., Dunsmuir J., Wong T.-f. (2000) Pore and throat size distributions measured from sychrotron X-ray tomographic images of Fontainebleau sandstones, J. Geophys. Research 105B, 21508–21528. [Google Scholar]
  • Lindquist W.B. (2002) Network flow model studies and 3D pore structure, Contemp. Math. 295, 355–366. [CrossRef] [Google Scholar]
  • Hunt A., Ewing R. (2009) Percolation Theory for Flow in Porous Media, volume 771, Lect. Notes in Phys., ISBN: 978-3-540-89789-7, Springer, Berlin. [Google Scholar]
  • Kanit T., Forest S., Gailliet I., Mounoury V., Jeulin D. (2003) Determination of the representative volume for random composites: Statistical and numerical approach, Int. J. Solids Struct. 40, 3647–3679. [Google Scholar]
  • Renard P., Allard D. (2013) Connectivity metrics for subsurface flow and transport, Advances in Water Resources 51, 168–196. [Google Scholar]
  • Savoye S., Frasca B., Grenut B., Fayette A. (2012) How mobile is iodide in the Callovo–Oxfordian claystones under experimental conditions close to the in situ ones? Journal of Contaminant Hydrology 142–143, 82–92. [CrossRef] [PubMed] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.