Dossier: Methodology for Process Development at IFP Energies nouvelles
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Numéro 3, May–June 2016
Dossier: Methodology for Process Development at IFP Energies nouvelles
Numéro d'article 44
Nombre de pages 19
DOI https://doi.org/10.2516/ogst/2015032
Publié en ligne 6 juin 2016
  • Albal R.S., Shah Y.T., Carr N.L., Bell A.T. (1984) Mass transfer coefficients and solubilities for hydrogen and carbon monoxide under Fischer-Tropsch conditions, Chem. Eng. Sci. 39, 5, 905–907. [CrossRef] [Google Scholar]
  • Bartholomew C.H. (2001) Mechanisms of catalyst deactivation, Applied Catal. A: General 212, 17, 60. [CrossRef] [Google Scholar]
  • Bartholomew C.H., Farrauto R.J. (2006) Fundamental of Industrial Catalytic Processes, 2nd edn., Wiley & Sons. [Google Scholar]
  • Bertoncini F., Marion M., Brodusch N., Esnault S. (2009) Élucider la composition moléculaire des produits obtenus par la réaction de Fischer-Tropsch catalysée par le cobalt par chromatographie gazeuse bidimensionnelle : méthodologie et application, Oil & Gas Science and Technology - Rev. IFP 64, 1, 79–90. [CrossRef] [EDP Sciences] [Google Scholar]
  • Bukur D.B., Patel S.A., Matheo R. (1987) Hydrodynamic studies in Fischer-Tropsch derived waxes in a bubble column, Chem. Eng. Comm. 60, 63–78. [CrossRef] [Google Scholar]
  • Charpentier J.C. (1981) Mass-transfer rates in gas-liquid absorbers and reactors, Advances in Chemical Engineering 11, 1–133. [CrossRef] [Google Scholar]
  • Dry M.E. (2002) The Fischer-Tropsch process: 1950-2000, Catalysis Today 71, 227–241. [CrossRef] [Google Scholar]
  • Degaleesan S., Dudukovic M.P., Toseland B.A., Bhatt B.L. (1997) A two-compartment convective-diffusion model for slurry bubble column reactors, Ind. Eng. Chem. Res. 36, 4670–4680. [CrossRef] [Google Scholar]
  • den Breejen J.P., Sietsma J.R.A., Friedrich H., Bitter J.H., de Jong K.P. (2010) Design of supported cobalt catalysts with maximum activity for the Fischer–Tropsch synthesis, J. Catal. 270, 146, 152. [CrossRef] [Google Scholar]
  • Eggenhuisen T.M., Munnik P., Talsma H., de Jongh P.E., de Jong K.P. (2012) Freeze-drying for controlled nanoparticle distribution in Co/SiO2 Fischer–Tropsch catalysts, J. Catal. 297, 306, 313. [Google Scholar]
  • Enger B.C., Fossan A.-L., Borg O., Rytter E., Holmen A. (2011) Modified alumina as catalyst support for cobalt in the Fischer–Tropsch synthesis, J. Catal. 284, 9, 22. [CrossRef] [Google Scholar]
  • Fischer N., van Steen E., Claeys M. (2013) Structure sensitivity of the Fischer–Tropsch activity and selectivity on alumina supported cobalt catalysts, J. Catal. 299, 67, 80. [CrossRef] [Google Scholar]
  • Forbes A. (2009) Economics of GTL, SMI GTL Conference, London, 27-28 Oct. [Google Scholar]
  • Forret A., Schweitzer J.-M., Gauthier T., Krishna R., Schweich D. (2003) Influence of scale on the hydrodynamics of bubble column reactors: An experimental study in columns of 0.1, 0.4 and 1 m diameters, Chem. Eng. Sci. 58, 719–724. [CrossRef] [Google Scholar]
  • Forret A., Schweitzer J.-M., Gauthier T., Krishna R., Schweich D. (2006) Scale up of slurry bubble reactors, Oil & Gas Science and Technology – Rev. IFP. 61, 443–458. [CrossRef] [EDP Sciences] [Google Scholar]
  • Iglesia E. (1997) Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts, Applied Catal. 161, 59, 78. [Google Scholar]
  • Krishna R., Ellenberger J. (1996) Gas holdup in bubble column reactors operating in the churn-turbulent regime, AIChE J. 42, 2627–2634. [CrossRef] [Google Scholar]
  • Krishna R., Urseanu M.I., van Baten J.M., Ellenberger J. (1999) Influence of scale on the hydrodynamics of bubble columns operating in the churn-turbulent regime: experiments vs. Eulerian simulations, Chem. Eng. Sci. 54, 4903–4911. [CrossRef] [Google Scholar]
  • Krishna R., Urseanu M.I., de Swart J.W.A., Ellenberger J. (2000) Gas holdup in bubble columns: operation with concentrated slurries versus high viscosity liquid, The Canadian Journal of Chemical Engineering 78, 442–447. [CrossRef] [Google Scholar]
  • Miyauchi T., Furusaki S., Morooka S., Ikeda Y. (1981) Transport phenomena and reaction in fluidized catalyst beds, Advances in Chemical Engineering 11, 275–448. [CrossRef] [Google Scholar]
  • Patel S.A., Daly J.G., Bukur D.B. (1990) Bubble-size distribution in Fischer-Tropsch derived waxes in bubble column, AIChE J. 36, 1, 93–105. [CrossRef] [Google Scholar]
  • Park S.-J., Bae J.W., Jung G.-I., Ha K.-S., Jun K.-W., Lee Y.-L. (2012) Crucial factors for catalyst aggregation and deactivation on Co/Al2O3 in a slurry-phase Fischer–Tropsch synthesis, Applied Catal. A: General 413-414, 310, 321. [Google Scholar]
  • Peña D., Griboval-Constant A., Lancelot C., Quijada M., Visez N., Stéphan O., Lecocq V., Diehl F., Khodakov A.Y. (2014) Molecular structure and localization of carbon species in alumina supported cobalt Fischer–Tropsch catalysts in a slurry reactor, Catal. Today 228, 65, 76. [Google Scholar]
  • Peña D., Griboval-Constant A., Diehl F., Lecocq V., Khodakov A.Y. (2013) Agglomeration at the Micrometer Length Scale of Cobalt Nanoparticles in Alumina-Supported Fischer–Tropsch Catalysts in a Slurry Reactor, ChemCatChem 5, 728, 731. [Google Scholar]
  • Perego C., Bortolo R., Zennaro R. (2009) Gas to liquids technologies for natural gas reserves valorization: The Eni experience, Catal. Today 142, 9, 16. [CrossRef] [Google Scholar]
  • Potgieter H., van der Westhuizen R., Rohwer E., Malan D. (2013) Hyphenation of supercritical fluid chromatography and two-dimensional gas chromatography mass spectrometry for group type separations, Journal of Chromatography A 1294, 0, 137–144. [CrossRef] [PubMed] [Google Scholar]
  • Rahmim I.I. (2009) Developing Premium Markets for GTL products, SMI GTL Conference, London, 27-28 Oct. [Google Scholar]
  • Reuel R.C., Bartholomew C.H. (1984) Effects of support and dispersion on the CO hydrogenation activity/selectivity properties of cobalt, J. Catal. 85, 78, 88. [Google Scholar]
  • Sarup B., Wojciechowski B.W. (1989) Studies of the Fischer-Tropsch synthesis on a Cobalt catalyst II. Kinetics of carbon monoxide conversion to methane and to higher hydrocarbons. Can. J. Chem. Eng. 67, 62–74. [CrossRef] [Google Scholar]
  • Schantz M.M., Martire D.E. (1987) Determination of hydrocarbon-water partition coefficients from chromatographic data and based on solution thermodynamics and theory, Journal of Chromatography 391, 35–51. [CrossRef] [Google Scholar]
  • Schultz H., Beck K., Erich E. (1988) Kinetics of Fischer-Tropsch selectivity, Fuel Process Technol. 18, 293–304. [CrossRef] [Google Scholar]
  • Schweitzer J.M., Viguié J.C. (2009) Oil & Gas Science and Technology – Rev. IFP 64, 1, 63–77. [CrossRef] [EDP Sciences] [Google Scholar]
  • Viguié J.-C. (2007) BTL: Advantages and Hurdles, World GTL 7 Summit, April 2007, London. [Google Scholar]
  • Visconti C.G., Lietti L., Forzatti P., Zennaro R. (2007) Fischer–Tropsch synthesis on sulphur poisoned Co/Al2O3 catalyst, Applied Catal. A: General 330, 49, 56. [CrossRef] [Google Scholar]
  • Visconti C.G., Tronconi E., Lietti L., Forzatti P., Rossini S., Zennaro R. (2011) Detailed kinetics of the Fischer-Tropsch synthesis on Cobalt catalysts based on H-assisted CO activation, Top Catal. 54, 786–800. [CrossRef] [Google Scholar]
  • van der Westhuizen R., Crous R., de Villiers A., Sandra P. (2010) Comprehensive two-dimensional gas chromatography for the analysis of FischerTropsch oil products, Journal of Chromatography A 1217, 52, 8334–8339. [CrossRef] [PubMed] [Google Scholar]
  • Wendt R., Steiff A., Weinspach P.-M. (1984) Liquid phase dispersion in bubble columns, Ger. Chem. Eng. 7, 267–273. [Google Scholar]
  • Wei D., Goodwin J.G., Oukaci R., Singleton A.H. (2001) Attrition resistance of cobalt F-T catalysts for slurry bubble column reactor use, Applied Catal. A: General 210, 137, 150. [Google Scholar]
  • Wolters M., van Grotel L.J.W., Eggenhuisen T.M., Sietsma J.R.A., de Jong K.P., de Jongh P.E. (2011) Combining confinement and NO calcination to arrive at highly dispersed supported nickel and cobalt oxide catalysts with a tunable particle size, Catal. Today 163, 27, 32. [CrossRef] [Google Scholar]
  • Zhang Q., Deng W., Wang Y. (2013) Recent advances in understanding the key catalyst factors for Fischer-Tropsch synthesis, J. Energy Chem. 22, 27, 38. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.