Dossier: Methodology for Process Development at IFP Energies nouvelles
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Numéro 3, May–June 2016
Dossier: Methodology for Process Development at IFP Energies nouvelles
Numéro d'article 43
Nombre de pages 18
Publié en ligne 27 octobre 2015
  • Ataki A., Bart H.J. (2006) Experimental and CFD simulation study for the weeting of s structured packing element with liquids, Chem. Eng. Technol. 29, 3, 336–347. [CrossRef] [Google Scholar]
  • Asprion N. (2005) Surface tension models for aqueous amine blends, Ind. Eng. Chem. Res. 44, 7270–7278. [CrossRef] [Google Scholar]
  • Bai H., Theuerkauf J., Gillis P.A. (2009) A Coupled DEM and CFD Simulation of Flow Field and Pressure Drop in Fixed Bed Reactor with Randomly Packed Catalyst Particles, Ind. Eng. Chem. Res. 48, 4060–4074. [CrossRef] [Google Scholar]
  • Bazer-Bachi F., Haroun Y., Augier F., Boyer C. (2013) Experimental evaluation of distributor technologies for trickle-bed reactors, Ind. Eng. Chem. Res. 52, 11189–11197. [CrossRef] [Google Scholar]
  • Billet R. (1995) Packed Towers, VCH Eds, Weinheim. [CrossRef] [Google Scholar]
  • Bravo J.L., Rocha J.A., Fair J.R. (1985) Mass transfer in gauze packings, Hydrocarbon Processing 64, 1, 91–95. [Google Scholar]
  • Brackbill J.U., Khote D.B., Zemach C. (1992) A continuum method for modelling surface tension, J. Comput. Phys. 100, 335–354. [CrossRef] [MathSciNet] [Google Scholar]
  • Brian P.L.T., Hurey J.F., Hassettine E.H. (1961) AIChE J. 7, 226. [CrossRef] [Google Scholar]
  • Brunazzi E., Nardini G., Paglianti A., Petraca L. (1995) Interfacial area of Mellapak packing Absorption of 1,1,1-trichloroethane by Genosorb 300, Chem. Eng. Technol. 18, 248. [CrossRef] [Google Scholar]
  • Brunazzi E.P. (1997) Liquid-Film Mass-Transfer Coefficient in a Column Equipped with Structured Packings, Ind. Eng. Chem. Res. 36, 3792–3799. [CrossRef] [Google Scholar]
  • Celebi M.S., Akyildiz H. (2002) Nonlinear modeling of liquid sloshing in a moving rectangular tank, Ocean Eng. 29, 1527–1553. [CrossRef] [Google Scholar]
  • Charpentier J.C. (2009) Perspective on multiscale methodology for product design and engineering, Comp. Chem. Eng. 33, 936–946. [CrossRef] [Google Scholar]
  • Chilton T.C. (1934) Mass Transfer Coefficient, Prediction from Data on Heat Transfer and Fluid Friction, Ind. Eng. Chem. 1183–1187. [CrossRef] [Google Scholar]
  • Danckwerts P.V. (1970) Gaz-Liquid Reaction, McGraw-Hill, New York. [Google Scholar]
  • Erasmus A.B. (2004) Mass Transfer in Structured Packing, Ph.D. Dissertation Chem. Eng., University of Stellenbosch, South Africa. [Google Scholar]
  • Fair J.R., Bravo J.L. (1990) Distillation columns containing structured packings, Chem. Eng. Prog. 86, 19–29. [Google Scholar]
  • Fernandes J., Lisboa P.F., Simoes P.C., Mota J.P.B., Saatdjian E. (2009) Application of CFD in the study of supercritical fluid extraction with structured packing: wet pressure drop calculations, J. Supercrit. Fluids 50, 61. [CrossRef] [Google Scholar]
  • Fourati M., Roig V., Raynal L. (2012) Experimental study of liquid spreading in structured packings, Chem. Eng. Sci. 80, 1–15. [CrossRef] [Google Scholar]
  • Fourati M., Roig V., Raynal L. (2013) Liquid dispersion in packed columns: experiments and numerical modelling, Chem. Eng. Sci. 100, 266–278. [CrossRef] [Google Scholar]
  • Haroun Y., Legendre D., Raynal L. (2010a) Direct numerical simulation of reactive absorption in gas–liquid flow on structured packing using interface capturing method, Chem. Eng. Sci. 65, 351–356. [CrossRef] [Google Scholar]
  • Haroun Y., Legendre D., Raynal L. (2010b) Volume of fluid method for interfacial reactive mass transfer: application to stable liquid film, Chem. Eng. Sci. 65, 2896–2909. [CrossRef] [Google Scholar]
  • Haroun Y., Raynal L., Legendre D. (2012) Mass transfer and liquid hold-up determination in structured packing by CFD, Chem. Eng. Sci. 75, 342–348. [CrossRef] [Google Scholar]
  • Haroun Y., Raynal L., Alix P. (2013) Partitioned distributor tray for offshore gas/liquid contact column, Patent US 20130277868. [Google Scholar]
  • Haroun Y., Raynal L., Alix P. (2014) Prediction of effective area and liquid hold-up in structured packings by CFD, Chem. Eng. Res. Des. 92, 2247–2254. [CrossRef] [Google Scholar]
  • Heggemann M., Hirschberg S., Spiegel L., Bachmann C. (2007) CFD Simulation and Experimental Validation of Fluid Flow in Liquid Distributors, Chem. Eng. Res. Des. 85, 59–64. [CrossRef] [Google Scholar]
  • Higbie R. (1935) The rate of absorption of a pure gas into a still liquid during short periods of exposure, Trans. AIChE 35, 365. [Google Scholar]
  • Hirt C.W., Nichols B.D. (1981) Volume of Fluid method for the dynamics of free boundaries, J. Comput. Phys. 39, 201–225. [CrossRef] [Google Scholar]
  • Hoffmann A., Ausner I., Repke J.-U., Wozny G. (2006) Detailed investigation of multiphase (gas–liquid and gas–liquid–liquid) flow behaviour on inclined plates, Chem. Eng. Res. Des. 84, 147–154. [CrossRef] [Google Scholar]
  • Ishimatsu M., Nosoko T., Nagata T. (1990) Flow patterns and wave characteristics of falling liquid films, Heat Trans. Japanese Res. 19, 602–615. [Google Scholar]
  • Iso Y., Chen X. (2011) Flow transition behavior of the wetting flow between the film flow and rivulet flow on an inclined wall, J. Fluids Eng. 133, 091101–91111. [CrossRef] [Google Scholar]
  • Iso Y., Huang J., Kato M., Matsuno S., Takano K. (2013) Numerical and experimental study on liquid film flows on packing elements in absorbers for post-combustion CO2 capture, Energy Procedia 37, 860–868. [CrossRef] [Google Scholar]
  • Kister H.Z. (1990) Distillation Operation, McGraw-Hill, New York, USA. [Google Scholar]
  • Lautenschleger A., Olenberg A., Kenig E.Y. (2015) Systematic CFD-based method to investigate and optimise novel structured packings, Chem. Eng. Sci. 122, 452–464. [CrossRef] [Google Scholar]
  • Lassauce A., Alix P., Raynal L., Royon-Lebeaud A., Haroun Y. (2014) Pressure Drop, Capacity and Mass Transfer Area Requirements for Post-Combustion Carbon Capture by Solvents, Oil Gas Sci. Technol. 69, 6, 1021–1034. [CrossRef] [EDP Sciences] [Google Scholar]
  • Li H.-L., Li J., Zong Z., Chen Z. (2014) Numerical studies on sloshing in rectangular tanks using a tree-based adaptive solver and experimental validation, Ocean Eng. 82, 20–31. [CrossRef] [Google Scholar]
  • Mahr B., Mewes D. (2007) CFD Modelling and calculation of dynamic two phase flow in columns equipped with structured packing, Chem. Eng. Res. Des. 85, 1112–1122. [CrossRef] [Google Scholar]
  • Moore F., Rukovena F. (1987) Liquid and gas distribution in commercial packed towers, Chem. Plants and Processing No. 8, 11. [Google Scholar]
  • Mohamed Ali A., Jansens P.J., Olujic Z. (2003) Experimental Characterization and Computational Fluid Dynamics Simulation of Gas Distribution Performance of Liquid (Re)Distributors and Collectors in Packed Columns, Chem. Eng. Res. Des. 81, 1, 108–115. [CrossRef] [Google Scholar]
  • Nikou K., Ehsani M.R. (2008) Turbulence models application on CFD simulation of hydrodynamics, heat and mass transfer in a structured packing, Int. Commun. Heat Mass Transfer 35, 1211. [CrossRef] [Google Scholar]
  • Nicoud F., Ducros F. (1999) Subgrid-Scale Stress Modelling Based on the Square of the Velocity Gradient Tensor, Flow Turb. Comb. 62, 3, 183–200. [Google Scholar]
  • Olujic Z., de Graauw J. (1989) Appearence of maldistribution in distillation columns equiped with hight performance packings, Chem. Biochem. Eng. Q. 3, 181–196. [Google Scholar]
  • Olujic Z., de Graauw J. (1990) Experimental studies on interaction between the initial liquid distribution and the performance of structured packing, Separation Sci. Tech. 25, 1723–1735. [CrossRef] [Google Scholar]
  • Olujic Z., Mohamed Ali A., Jansens P.J. (2004) Effect of the initial gas maldistribution on the pressure drop of structured packings, Chem. Eng. Process. 43, 465–476. [CrossRef] [Google Scholar]
  • Petre C.F., Larachi F., Illiuta I., Grandjean B.P.A. (2003) Pressure drop through structured packings: breakdown into the contributing mechanisms by CFD modelling, Chem. Eng. Sci. 58, 163–177. [CrossRef] [Google Scholar]
  • Pierson F.W., Whitaker S. (1977) Some theoretical and experimental observations of the wave structure of falling liquid film, Ind. Eng. Chem. Fundam. 16, 401–408. [CrossRef] [Google Scholar]
  • Raynal L., Harter I. (2001) Studies of Gas-Liquid flow through distributing devices using VOF-CFD simulations, Chem. Eng. Sci. 56, 6385–6391. [CrossRef] [Google Scholar]
  • Raynal L., Boyer C., Ballaguet J.P. (2004) Liquid holdup and pressure drop determination in structured packing with CFD simulation, Can. J. Chem. Eng. 82, 871–879. [CrossRef] [Google Scholar]
  • Raynal L., Royon-Lebeaud A. (2007) A multi-scale approach for CFD calculations of gas–liquid flow within large size column equipped with structured packing, Chem. Eng. Sci. 62, 7196–7204. [CrossRef] [Google Scholar]
  • Raynal L., Ben Rayana F., Royon-Lebeaud A. (2009) Use of CFD for CO2 absorbers optimum design: from local scale to large industrial scale, Energy Procedia 1, 917–924. [CrossRef] [Google Scholar]
  • Raynal L., Gomez A., Caillat B., Haroun Y. (2013) CO2 capture cost reduction: Use of a multiscale simulations strategy for a multiscale issue, Oil Gas Sci. Technol. 68, 1093–1108. [CrossRef] [EDP Sciences] [Google Scholar]
  • Said W., Nemer M., Clodic D. (2011) Modeling of dry pressure drop for fully developed gas flow in structured packing using CFD simulations, Chem. Eng. Sci. 66, 2107–2117. [CrossRef] [Google Scholar]
  • Scardovelli R., Zaleski S. (1999) Direct numerical simulation of free-surface and interfacial flow, Annu. Rev. Fluid Mech. 31, 567–603. [CrossRef] [Google Scholar]
  • Sebastia-Saez D., Gu S., Ranganathan P., Papadikis K. (2013) 3D modeling of hydrodynamics and physical mass transfer characteristics of liquid film flows in structured packing elements, Int. J. Greenhouse Gas Control 19, 492–502. [CrossRef] [Google Scholar]
  • Sebastia-Saez D., Gu S., Ranganathan P., Papadikis K. (2014) Micro-scale CFD study about the influence of operative parameters onphysical mass transfer within structured packing elements, Int. J. Greenhouse Gas Control 28, 180–188. [CrossRef] [Google Scholar]
  • Shojaee S., Hosseini S.H., Rafati A., Ahmadi G. (2011) Prediction of the effective area in structured packings by computational fluid dynamics, Ind. Eng. Chem. Res. 50, 10833–10842. [CrossRef] [Google Scholar]
  • Soulaine C., Horgue P., Franc J., Quintard M. (2014) Gas–liquid flow modeling in columns equipped with structured packing, AIChE Journal 60, 10, 3665–3674. [CrossRef] [Google Scholar]
  • Stemich C., Spiegel L. (2011) Characterization and quantification of the quality of gas flow distributions, Chem. Eng. Res. Design 89, 1392–1396. [CrossRef] [Google Scholar]
  • Spiegel L., Meier W. (1992) A generalized pressure drop model for structured packings, Distillation and Absorption, IChemE Symp. 128, B85–B94. [Google Scholar]
  • Szulczewska B., Sek J., Gorak A., Zbicinski I. (2000) CFD calculation of two-phase flow on elements of structured packing, Chisa Int. Conf., Praha, Czech Republic, Aug. 27-37, Paper #565, 1-10. [Google Scholar]
  • Tailby S.R., Portalski S. (1962) Wave inception on a liquid film flowing down a hydrodynamically smooth plate, Chem. Eng. Sci. 19, 283–290. [CrossRef] [Google Scholar]
  • Tsai R.E., Seibert A.F., Eldridge R.B., Rochelle G.T. (2011) A dimensionless model for predicting the mass-transfer area of structured packing, AIChE J. 57, 1173–1184. [CrossRef] [Google Scholar]
  • Wacławczyk T., Koronowicz T. (2008) Comparison of CICSAM and HRIC high-Resolution schemes for interface capturing, J. Theo. App. Mech. 46, 2, 325–345. [Google Scholar]
  • Wang C. (2012) Measurement of Packing Effective Area and Mass Transfer Coefficients, Luminant Carbon Management Program and Process Science and Technology Center, Austin, Texas, pp. 1–9. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.