Dossier: Methodology for Process Development at IFP Energies nouvelles
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Numéro 3, May–June 2016
Dossier: Methodology for Process Development at IFP Energies nouvelles
Numéro d'article 45
Nombre de pages 49
DOI https://doi.org/10.2516/ogst/2016011
Publié en ligne 26 juillet 2016
  • Adam F., Bertoncini F., Coupard V., Charon N., Thiébaut D., Espinat D., Hennion M.-C. (2008) Using Comprehensive Two-Dimensional Gas Chromatography for the Analysis of Oxygenates in Middle Distillates I. Determination of the Nature of Biodiesels Blends in Diesel Fuel, J. Chromatogr. A 1186, 236–244. [CrossRef] [PubMed] [Google Scholar]
  • Adam F., Bertoncini F., Dartiguelongue C., Marchand K., Thiébaut D., Hennion M.-C. (2009) Comprehensive Two-Dimensional Gas Chromatography for Basic and Neutral Nitrogen Speciation in Middle Distillates, Fuel 88, 938–946. [CrossRef] [Google Scholar]
  • Ahmad M.I., Zhang N., Jobson M. (2011) Molecular Components-Based Representation of Petroleum Fractions, Chem. Eng. Res. Des. 89, 410–420. [CrossRef] [Google Scholar]
  • Al Halwachi H.K., Yakovlev D.S., Boek E.S. (2012) Systematic Optimization of Asphaltene Molecular Structure and Molecular Weight Using the Quantitative Molecular Representation Approach, Energy & Fuels 26, 10, 6177–6185. [CrossRef] [Google Scholar]
  • Alwahabi S.M., Froment G.F. (2004) Single Event Kinetic Modeling of the Methanol-to-Olefins Process on SAPO-34, Ind. Eng. Chem. Res. 43, 17, 5098–5111. [CrossRef] [Google Scholar]
  • Al-Zaid K., Khan Z.H., Hauser A., Al-Rabiah H. (1998) Composition of high boiling petroleum distillates of Kuwait crude oils, Fuel 77, 5, 453–458. [Google Scholar]
  • Ali F., Ghaloum N., Hauser A. (2006) Structure representation of asphaltene GPC fractions derived from Kuwaiti residual oils, Energy & Fuels 19, 231–238. [CrossRef] [Google Scholar]
  • Ali L.H., Al-Ghannam K.A., Al-Rawi J.M. (1990) Chemical Structure of Asphaltenes in Heavy Crude Oils Investigated by N.M.R, Fuel 69, 519–521. [CrossRef] [Google Scholar]
  • Allen D.T., Liguras D.K. (1991) Structural Models of Catalytic Cracking Chemistry: A Case Study of Group Contribution Approach to Lumped Kinetic Modeling, in Chemical Reactions in Complex Mixtures: The Mobil Workshop, Sapre A.M., Krambeck F.J. (eds), Springer, pp. 101–125. [CrossRef] [Google Scholar]
  • Altgelt H.K., Boduszynski M.M. (1994) Composition and Analysis of Heavy Petroleum Fractions, Marcel Dekker, Inc. [Google Scholar]
  • Alvarez-Majmutov A., Chen J., Gieleciak R., Hager D., Heshka N., Salmon S. (2014) Deriving the Molecular Composition of Middle Distillates by Integrating Statistical Modeling with Advanced Hydrocarbon Characterization, Energy & Fuels 28, 12, 7385–7393. [CrossRef] [Google Scholar]
  • Alvarez-Majmutov A., Gieleciak R., Chen J. (2015) Deriving the Molecular Composition of Vacuum Distillates by Integrating Statistical Modeling and Detailed Hydrocarbon Characterization, Energy & Fuels 29, 12, 7931–7940. [CrossRef] [Google Scholar]
  • Alvarez-Majmutov A., Chen J., Gieleciak R. (2016) Molecular-Level Modeling and Simulation of Vacuum Gas Oil Hydrocracking, Energy & Fuels 30, 1, 138–148. [CrossRef] [Google Scholar]
  • Andersson J.T., Sielex K. (1996) Dimethylbenzothiophenes and Methyldibenzothiophenes in Crude Oils from Different Sources, J. High Resolut. Chromatogr. 19, 49–53. [CrossRef] [Google Scholar]
  • Artok L., Su Y., Hirose Y., Hosokawa M., Murata S., Nomura M. (1999) Structure and Reactivity of Petroleum-Derived Asphaltene, Energy & Fuels 13, 287–296. [CrossRef] [Google Scholar]
  • ASTM D2425 (2007) Standard Test Method for Hydrocarbon Types in Middle Distillates by Mass Spectrometry, Annu. B. ASTM Stand. [Google Scholar]
  • ASTM D2786 (2007) Standard Test Method for Hydrocarbon Types Analysis of Gas Oil Saturates Fractions by High Ionizing Voltage Mass Spectrometry, Annu. B. ASTM Stand. [Google Scholar]
  • ASTM D6730 (2007) Standard Test Method for Determination of Individual Components in Spark Ignition Engine Fuels by 100–Metre Capillary (with Precolumn) High Resolution Gas, Annu. B. ASTM Stand. [Google Scholar]
  • Aye M.M.S., Zhang N. (2005) A Novel Methodology in Transforming Bulk Properties of Refining Streams into Molecular Information, Chem. Eng. Sci. 60, 6702–6717. [CrossRef] [Google Scholar]
  • Baltanas M.A., Froment G.F. (1985) Computer Generation of Reaction Networks and Calculation of Product Distributions in the Hydroisomerization and Hydrocracking of Paraffins on Pt-containing Bifunctional Catalysts, Comp. Chem. Eng. 9, 1, 71–81. [Google Scholar]
  • Baltanas M.A., van Raemdonck K.K., Froment G.F., Mohedas S.R. (1989) Fundamental Kinetic Modeling of Hydroisomerization and Hydrocracking on Noble Metal-loaded Faujasites. 1. Rate Parameters for Hydroisomerization, Ind. Eng. Chem. Res. 28, 7, 899–910. [CrossRef] [Google Scholar]
  • Battin-Leclerc F., Glaude P.A., Warth V., Fournet R., Scacchi G., Côme G.M. (2000) Computer Tools for Modelling the Chemical Phenomena Related to Combustion, Chem. Eng. Sci. 55, 15, 2883–2893. [CrossRef] [Google Scholar]
  • Beirnaert H.C., Alleman J.R., Marin G.B. (2001) A Fundamental Kinetic Model for the Catalytic Cracking of Alkanes on a USY Zeolite in the Presence of Coke Formation, Ind. Eng. Chem. Res. 40, 5, 1337–1347 [CrossRef] [Google Scholar]
  • Benson S.W. (1976) Thermochemical Kinetics: Methods for the Estimation of Thermochemical Data and Rate Parameters, 2nd ed., Wiley Interscience, ISBN 978-0471067818. [Google Scholar]
  • Benson S.W., Cohen N. (1993) Estimation of Heats of Formation of Organic Compounds by Additivity Methods, Chemical Reviews 93, 2419–2438. [Google Scholar]
  • Bera T., Thybaut J.W., Marin G.B. (2011) Single-Event MicroKinetics of Aromatics Hydrogenation on Pt/H-ZSM22, Ind. Eng. Chem. Res. 50, 23, 12933–12945. [CrossRef] [Google Scholar]
  • Bera T., Thybaut J.W., Marin G.B. (2012) Extension of the Single-Event Microkinetic Model to Alkyl Substituted Monoaromatics Hydrogenation on a Pt Catalyst, ACS Catalysis 2, 7, 1305–1318. [CrossRef] [Google Scholar]
  • Bertoncini F., Courtiade M., Thiébaut D. (2013) Gas Chromatography and 2D-Gas Chromatography for Petroleum Industry, Editions Technip, Paris (France). [Google Scholar]
  • Bhan A., Hsu S.-H., Blau G., Caruthers J.M., Venkatasubramanian V., Delgass W.N. (2005) Microkinetic Modeling of Propane Aromatization over HZSM-5, Journal of Catalysis 235, 35–51. [CrossRef] [Google Scholar]
  • Billaud F., Elyahyaoui K., Baronnet F., Kressmann S. (1991) Chemical kinetic modeling of n-hexane pyrolysis of ACUCHEM, CHEMKIN and MORSE software packages, Chem. Eng. Sci. 46, 11, 2941–2946. [CrossRef] [Google Scholar]
  • Blinov M.L., Yang J., Faeder J.R., Hlavacek W.S. (2005a) Graph Theory for Rule-based Modeling of Biochemical Networks, Transactions on Computational Systems Biology VII: Lecture Notes in Computer Science 4230, 89–106. [CrossRef] [Google Scholar]
  • Blinov M.L., Faeder J.R., Yang J., Goldstein B., Hlavacek W.S. (2005b) ‘On-the-fly’ or ‘generate-first’ modeling?, Nature Biotechnology 23, 11, 1344–1345 [CrossRef] [Google Scholar]
  • Blurock E.S. (1995) Reaction: System for Modeling Chemical Reactions, J. Chem. Inf. Comput. Sci. 35, 3, 607–616. [CrossRef] [Google Scholar]
  • Boduszynski M.M. (1987) Composition of Heavy Petroleums. 1. Molecular Weight, Hydrogen Deficiency, and Heteroatom Concentration as a Function of Atmospheric Equivalent Boiling Point up to 1400.degree.F (760.degree.C), Energy & Fuels 1, 2–11. [CrossRef] [Google Scholar]
  • Boduszynski M.M. (1988) Composition of Heavy Petroleums. 2. Molecular Characterization, Energy & Fuels 2, 597–613. [CrossRef] [Google Scholar]
  • Boek E.S., Yakovlev D.S., Headen T.F. (2009) Quantitative Molecular Representation of Asphaltenes and Molecular Dynamics Simulation of Their Aggregation, Energy & Fuels 23, 3, 1209–1219. [CrossRef] [Google Scholar]
  • Bonnardot J. (1998) Modèlisation cinétique des réactions d’hydrotraitement par regroupement en familles chimiques, Ph.D. Thesis, Université Claude Bernard – Lyon (France). [Google Scholar]
  • Bounaceur R., Warth V., Marquaire P.-M., Scacchi G., Domine F., Dessort D., Pradier B., Brevart O. (2002) Modeling of Hydrocarbons Pyrolysis at Low Temperature. Automatic Generation of Free Radicals Mechanisms, J. Anal. Appl. Pyrol. 64, 1, 103–122. [CrossRef] [Google Scholar]
  • Bouyssiere B., Leonhard P., Profrock D., Baco F., López García C., Wilbur S., Prange A. (2004) Investigation of the sulfur speciation in petroleum products by capillary gas chromatography with ICP-collision cell-MS detection, Journal of Analytical Atomic Spectroscopy 19, 5, 700–702. [CrossRef] [Google Scholar]
  • Broadbelt L.J., Stark S.M., Klein M.T. (1994) Computer-Generated Pyrolysis Modeling – On-the-Fly Generation of Species, Reactions, and Rates, Ind. Eng. Chem. Res. 33, 4, 790–799. [CrossRef] [Google Scholar]
  • Broadbelt L.J., Klein M.T., Dean B.D., Andrews S.M. (1995) Thermal Degradation of Aliphatic-Aromatic Polyamides: Kinetics of N,N′-Dihexylisophthalamide Neat and in Presence of Copper Iodide, Journal of Applied Polymer Science 56, 7, 803–815. [CrossRef] [Google Scholar]
  • Brown J.K., Ladner W.R. (1960) A Study on the Hydrogen Distribution in Coal-like Materials by High-Resolution Nuclear Magnetic Resonance Spectroscopy II: A Comparison with Infra-Red Measurement and the Conversion to Carbon Structure, Fuel 39, 87–96. [Google Scholar]
  • Brønsted J.N. (1928) Acid and Basic Catalysis, Chem. Rev. 5, 3, 231–338. [CrossRef] [Google Scholar]
  • Brønsted J.N., Pedersen K.J. (1924) Die katalytische Zersetzung des Nitramids und ihre physikalisch-chemische Bedeutung, Zeitschrift für Phys. Chemie 108, 185–235. [Google Scholar]
  • Bruk L.G., Gorodskii S.N., Zeigarnik A.V., Valdés-Pérez R.E., Temkin O.N. (1998) Oxidative Carbonylation of Phenylacetylene Catalyzed by Pd(II) and Cu(I): Experimental Tests of Forty-One Computer-Generated Mechanistic Hypotheses, J. Mol. Catal. A: Chem. 130, 1–2, 29–40. [CrossRef] [Google Scholar]
  • Buda F., Heyberger B., Fournet R., Glaude P.A., Warth V., Battin-Leclerc F. (2006) Modeling of the Gas-Phase Oxidation of Cyclohexane, Energy & Fuels 20, 4, 1450–1459. [CrossRef] [Google Scholar]
  • Bytautas L., Klein D.J. (1998) Chemical Combinatorics for Alkane-Isomer Enumeration and more, J. Chem. Inf. Comput. Sci. 38, 1063–1078. [CrossRef] [Google Scholar]
  • Campbell D.M., Klein M.T. (1997) Construction of a Molecular Representation of a Complex Feedstock by Monte Carlo and Quadrature Methods, Appl. Catal. A Gen. 160, 41–54. [CrossRef] [Google Scholar]
  • Cantor D.M. (1978) Nuclear magnetic resonance spectrometric determination of average molecular structure parameters for coal-derived liquids, Analytical Chemistry 50, 8, 1185–1187. [CrossRef] [Google Scholar]
  • Cayley A. (1875) Über die analytischen Figuren, welche in der Mathematik Baeume genannt warden, Chem. Ber. 8, 1056–1059. [CrossRef] [Google Scholar]
  • Chapman N.B., Shorter J. (eds) (1978) Correlation analyses in chemistry: Recent advances, Plenum, New York. [CrossRef] [Google Scholar]
  • Charon-Revellin N., Dulot H., López García C., Jose J. (2011) Kinetic Modeling of Vacuum Gas Oil Hydrotreatment using a Molecular Reconstruction Approach, Oil Gas Sci. Technol. – Rev. d’IFP Energies Nouvelles 66, 3, 479–490. [CrossRef] [EDP Sciences] [Google Scholar]
  • Chavarría-Hernández J.C., Ramírez J., Gonzalez H., Baltanas M.A. (2004) Modelling of n-Hexadecane Hydroisomerization and Hydrocracking Reactions on a Mo/H Beta-Alumina Bi-Functional Catalyst Using the Single Event Concept, Catal. Today 98, 1–2, 235–242. [CrossRef] [Google Scholar]
  • Chavarría-Hernández J.C., Ramírez J., Baltanas M.A. (2008) Single-Event Lumped-Parameter Hybrid (SELPH) Model for Non-Ideal Hydrocracking of n-Octane, Catal. Today 130, 2–4, 455–461. [CrossRef] [Google Scholar]
  • Chavarría-Hernández J.C., Ramírez J. (2009) Modeling Ideal and Nonideal Hydrocracking of Paraffins Using the Single-Event Lumped-Parameter Hybrid (SELPH) Model, Ind. Eng. Chem. Res. 48, 3, 1203–1207. [CrossRef] [Google Scholar]
  • Chevalier C., Warnatz J., Melenk H. (1990) Automatic Generation of Reaction Mechanisms for Description of Oxidation of Higher Hydrocarbons, Ber. Bunsenges. Phys. Chem. 94, 1362–1367. [Google Scholar]
  • Chevalier C., Pitz W.J., Warnatz J., Westbrook C.K., Melenk H. (1992) Hydrocarbon Ignition: Automatic Generation of Reaction Mechanisms and Applications to Modeling of Engine Shock, Proc. Combust. Inst. 24, 1362–1367. [Google Scholar]
  • Chinnick S.J., Baulch D.L., Ayscough P.B. (1988) An Expert System for Hydrocarbon Pyrolysis Reactions, Chemometrics and Intelligent Laboratory Systems 5, 1, 39–52. [CrossRef] [Google Scholar]
  • Choudhury I.R., Thybaut J.W., Balasubramanian P., Denayer J.F.M., Martens J.A., Marin G.B. (2010) Synergy between Shape Selective and Non-Shape Selective Bifunctional Zeolites Modelled via the Single-Event MicroKinetic (SEMK) Methodology, Chem. Eng. Sci. 65, 1, 174–178. [CrossRef] [Google Scholar]
  • Christensen G., Apelian M.R., Hickey K.J., Jaffe S.B. (1999) Future Directions in Modeling the FCC Process: An Emphasis on Product Quality, Chem. Eng. Sci. 54, 2753–2764. [CrossRef] [Google Scholar]
  • Clymans P.J., Froment G.F. (1984) Computer Generation of Reaction Paths and Rate Equations in the Thermal Cracking of Normal and Branched Paraffins, Comp. Chem. Eng. 8, 2, 137–142. [CrossRef] [Google Scholar]
  • Cochegrue H., Gauthier P., Verstraete J.J., Surla K., Guillaume D., Galtier P., Barbier J. (2011) Reduction of Single Event Kinetic Models by Rigorous Relumping: Application to Catalytic Reforming, Oil Gas Sci. Technol. – Rev. d’IFP Energies Nouvelles 66, 3, 367–397. [CrossRef] [EDP Sciences] [Google Scholar]
  • Côme G.M., Warth V., Glaude P.A., Fournet R., Battin-Leclerc F., Scacchi G. (1996) Computer-Aided Design of Gas-Phase Oxidation Mechanisms. Application to Modeling of n-Heptane and Iso-Octane Oxidation, 26th Int. Symposium on Combustion, Symposium (International) on Combustion 26, 1, 755–762. [CrossRef] [Google Scholar]
  • Connors K.A. (1990) Chemical Kinetics: The Study of Reaction Rates in Solution, VCH Verlagsgesellschaft Weinheim, New York (NY). [Google Scholar]
  • Constantinou L., Gani R. (1994) New Group Contribution Method for Estimating Properties of Pure Compounds, AIChE J. 40, 1697–1710. [Google Scholar]
  • Danial-Fortain P. (2010) Étude de la réactivité des résidus pétroliers en hydroconversion, Ph.D. Thesis, Université Bordeaux 1, Bordeaux (France). [Google Scholar]
  • Danial-Fortain P., Gauthier T., Merdrignac I., Budzinski H. (2010) Reactivity Study of Athabasca Vacuum Residue in Hydroconversion Conditions, Catalysis Today 150, 255–263. [CrossRef] [Google Scholar]
  • Daubert T.E., Danner R.P. (1989) Physical and Thermodynamic Properties of Pure Compounds: Data Compilation, Hemisphere, New York. [Google Scholar]
  • De Bruycker R., Pyl S.P., Reyniers M.F., Van Geem K.M., Marin G.B. (2015) Microkinetic model for the pyrolysis of methyl esters: From model compound to industrial biodiesel, AIChE Journal 61, 12, 4309–4322. [CrossRef] [Google Scholar]
  • de Oliveira L.P. (2013) Développement d’une méthodologie de modélisation cinétique de procédés de raffinage traitant les charges lourdes, Ph.D. Thesis, École Normale Supérieure de Lyon (France). [Google Scholar]
  • de Oliveira L.P., Verstraete J.J., Kolb M. (2012) A Monte Carlo Modeling Methodology for the Simulation of Hydrotreating Processes, Chem. Eng. J. 207–208, 94–102. [CrossRef] [Google Scholar]
  • de Oliveira L.P., Trujillo Vazquez A., Verstraete J.J., Kolb M. (2013a) Molecular Reconstruction of Petroleum Fractions: Application to Various Vacuum Residues, Energy & Fuels 27, 3622–3641. [CrossRef] [Google Scholar]
  • de Oliveira L.P., Verstraete J.J., Kolb M. (2013b) Molecule-based Kinetic Modeling by Monte Carlo Methods for Heavy Petroleum Conversion, Science China Chem. 16, 11, 1608–1622. [CrossRef] [Google Scholar]
  • de Oliveira L.P., Verstraete J.J., Kolb M. (2013c) Development of a General Modelling Methodology for Vacuum Residue Hydroconversion, Oil & Gas Science and Technology – Revue IFP Energies nouvelles 68, 6, 1027–1038. [CrossRef] [EDP Sciences] [Google Scholar]
  • de Oliveira L.P., Verstraete J.J., Kolb M. (2014) Simulating Vacuum Residue Hydroconversion by means of Monte-Carlo Techniques, Catal. Today 220–222, 208–220. [Google Scholar]
  • Dente M., Pierucci S., Ranzi E., Bussani G. (1992) New Improvements in Modeling Kinetic Schemes for Hydrocarbons Pyrolysis Reactors, Chem. Eng. Sci. 51, 2629–2634. [CrossRef] [Google Scholar]
  • Depauw G.A., Froment G.F. (1997) Molecular Analysis of the Sulphur Components in a Light Cycle Oil of a Catalytic Cracking Unit by Gas Chromatography with Mass Spectrometric and Atomic Emission Detection, J. Chromatogr. A 761, 231–247. [CrossRef] [Google Scholar]
  • Dewachtere N.V., Santaella F., Froment G.F. (1999) Application of a Single-Event Kinetic Model in the Simulation of an Industrial Riser Reactor for the Catalytic Cracking of Vacuum Gas Oil, Chem. Eng. Sci. 54, 15–16, 3653–3660. [CrossRef] [Google Scholar]
  • DeWitt M.J., Dooling D.J., Broadbelt L.J. (2000) Computer Generation of Reaction Mechanisms Using Quantitative Rate Information: Application to Long-Chain Hydrocarbon Pyrolysis, Ind. Eng. Chem. Res. 39, 7, 2228–2237. [CrossRef] [Google Scholar]
  • Dickinson E.M. (1980) Structural comparison of petroleum fractions using proton and 13C NMR spectroscopy, Fuel 59, 290–294. [CrossRef] [Google Scholar]
  • Di Maio F.P., Lignola P.G. (1992) KING, a Kinetic Network Generator, Chem. Eng. Sci. 47, 9–11, 2713–2718. [CrossRef] [Google Scholar]
  • Dutriez T., Courtiade M., Thiebaut D., Dulot H., Bertoncini F., Vial J., Hennion M.C. (2009) High-Temperature Two-Dimensional Gas Chromatography of Hydrocarbons up to nC(60) for Analysis of Vacuum Gas Oils, Journal of Chromatography A 1216, 14, 2905–2912. [CrossRef] [PubMed] [Google Scholar]
  • Dutriez T., Courtiade M., Thiebaut D., Dulot H., Hennion M.C. (2010) Improved Hydrocarbons Analysis of Heavy Petroleum Fractions by High Temperature Comprehensive Two-Dimensional Gas Chromatography, Fuel 89, 9, 2338–2345. [CrossRef] [Google Scholar]
  • Dutriez T., Borras J., Courtiade M., Thiebaut D., Dulot H., Bertoncini F., Hennion M.C. (2011) Challenge in the speciation of nitrogen-containing compounds in heavy petroleum fractions by high temperature comprehensive two-dimensional gas chromatography, Journal of Chromatography A 1218, 21, 3190–3199. [CrossRef] [PubMed] [Google Scholar]
  • Dzidic I., Balicki M.D., Rhodes I.A.L., Hart H.V. (1988) Identification and Quantification of Nitrogen and Sulfur Compounds in Catalytically Cracked Heavy Gas Oils by Isobutane/CI GC/MS and GC Using Selective Detectors, J. Chromatogr. Sci. 26, 236–240. [CrossRef] [Google Scholar]
  • Evans M.G., Polanyi M. (1935) Some applications of the transition state method to the calculation of reaction velocities, especially in solution, Trans. Faraday Soc. 31, 875–894. [CrossRef] [Google Scholar]
  • Evans M.G., Polanyi M. (1936) Further considerations on the thermodynamics of chemical equilibria and reaction rates, Trans. Faraday Soc. 32, 1333–1360. [Google Scholar]
  • Evans M.G., Polanyi M. (1938) Inertia and driving force of chemical reactions, Trans. Faraday Soc. 34, 11–24. [Google Scholar]
  • Faeder J.R., Hlavecek W.S., Reischl I., Blinov M.L., Metzger H., Redondo A., Wofsy C., Goldstein B. (2003) Investigation of early events in Fc epsilon RI-mediated signaling using a detailed mathematical model, Journal of Immunology 170, 7, 3769–3781. [CrossRef] [Google Scholar]
  • Faeder J.R., Blinov M.L., Goldstein B., Hlavacek W.S. (2005) Rule-based Modeling of Biochemical Networks, Complexity 10, 22–41. [CrossRef] [Google Scholar]
  • Fafet A., Bonnard J., Prigent F. (1999a) New Developments in Mass Spectrometry for Group-Type Analysis of Petroleum Cuts (First Part), Oil Gas Sci. Technol. - Rev. l’IFP Energies Nouvelles 54, 439–452. [Google Scholar]
  • Fafet A., Bonnard J., Prigent F. (1999b) New Developments in Mass Spectrometry for Group-Type Analysis of Petroleum Cuts (Second Part), Oil Gas Sci. Technol. - Rev. l’IFP Energies Nouvelles 54, 453–462. [CrossRef] [EDP Sciences] [Google Scholar]
  • Faulon J.-L. (1994) Stochastic Generator of Chemical Structure. 1. Application to the Structure Elucidation of Large Molecules, J. Chem. Inf. Model. 34, 1204–1218. [CrossRef] [Google Scholar]
  • Faulon J.L., Vandenbroucke M., Drappier J.M., Behar F., Romero M. (1990) Modélisation des structures chimiques des macromolécules sédimentaires: le logiciel XMOL, Oil & Gas Science and Technology – Rev. IFP Energies nouvelles 45, 2, 161–180. [Google Scholar]
  • Faulon J.-L., Sault A.G. (2001) Stochastic Generator of Chemical Structure. 3. Reaction Network Generation, J. Chem. Inf. Model. 41, 894–908. [Google Scholar]
  • Faulon J.-L., Visco D.P., Roe D. (2005) Enumerating Molecules, in Reviews in Computational Chemistry, Vol. 21, K.B. Lipkowitz, R. Larter, T.R. Cundari, D.B. Boyd (eds), J. Wiley & Sons, pp. 209–275. [Google Scholar]
  • Feng W., Vynckier E., Froment G.F. (1993) Single-Event Kinetics of Catalytic Cracking, Ind. Eng. Chem. Res. 32, 12, 2997–3005. [CrossRef] [Google Scholar]
  • Ferreira C. (2009) Modélisation de l’hydrotraitement de résidus pétroliers en lit fixe. Étude de la réactivité de charges, Ph.D. Thesis, École Normale Supérieure de Lyon (France). [Google Scholar]
  • Ferreira C., Marques J., Tayakout-Fayolle M., Guibard I., Lemos F., Toulhoat H., Ramôa Ribeiro F. (2010) Modeling Residue Hydrotreating, Chem. Eng. Sci. 65, 322–329. [CrossRef] [Google Scholar]
  • Ferreira C., Tayakout-Fayolle M., Guibard I., Lemos F. (2014) Hydrodesulfurization and Hydrodemetallization of Different Origin Vacuum Residues: New Modeling Approach, Fuel 129, 267–277. [CrossRef] [Google Scholar]
  • Fierro V., Duplan J.L., Verstraete J.J., Schuurman Y., Mirodatos C. (2001) A non-stationary kinetics approach for the determination of the kinetic parameters of the protolytic cracking of methylcyclohexane, in Reaction kinetics and the development of catalytic processes, G.F. Froment, K.C. Waugh (eds), Studies in Surface Science and Catalysis 133, 341–348. [Google Scholar]
  • Fierro V., Schuurman Y., Mirodatos C., Duplan J.L., Verstraete J.J. (2002) Study of the cracking reaction of linear and branched hexanes under protolytic conditions by nonstationary kinetics, Chemical Engineering Journal 90, 1–2, 139–147. [CrossRef] [Google Scholar]
  • Finley S.D., Broadbelt L.J., Hatzimanikatis V. (2009) Computational Framework for Predictive Biodegradation, Biotechnology and Bioengineering 104, 6, 1086–1097. [CrossRef] [PubMed] [Google Scholar]
  • Fischer I., Fischer P. (1974) Analysis of High-Boiling Petroleum Streams by High-Resolution Mass Spectrometry, Talanta 21, 867–875. [CrossRef] [PubMed] [Google Scholar]
  • Flory P.J. (1936) Molecular Size Distribution in Linear Condensation Polymers, J. Am. Chem. Soc. 58, 1877–1885. [CrossRef] [Google Scholar]
  • Fontain E., Reitsam K. (1991) The Generation of Reaction Networks with RAIN. 1. The Reaction Generator, J. Chem. Inf. Comput. Sci. 31, 1, 96–101. [CrossRef] [MathSciNet] [Google Scholar]
  • Frenkel M., Hong X., Wilhoit R. (eds) (2000) TRC Thermodynamic Tables – Hydrocarbons, Washington DC. [Google Scholar]
  • Frenklach M. (1987) Modeling of Large Reaction Systems, Complex Chemical Reaction Systems, Mathematical Modelling and Simulation, Springer Series in Chemical Physics, 2–16. [Google Scholar]
  • Froment G.F. (1991) Fundamental Kinetic Modeling of Complex Processes, in: Chemical Reactions in Complex Systems: the Mobil Workshop, A.V. Sapre, F.J. Krambeck (eds), Van Nostrand Reinhold, New York, pp. 77–100. [CrossRef] [Google Scholar]
  • Froment G.F. (1999) Kinetic Modeling of Acid-Catalyzed Oil Refining Processes, Catalysis Today 52, 153–163. [CrossRef] [Google Scholar]
  • Froment G.F. (2005) Single Event Kinetic Modeling of Complex Catalytic Processes, Catalysis Reviews 47, 83–124. [CrossRef] [Google Scholar]
  • Froment G.F., Depauw G.A., Vanrysselberghe V. (1994) Kinetic Modeling and Reactor Simulation in Hydrodesulfurization of Oil Fractions, Industrial & Engineering Chemistry Research 33, 12, 2975–2988. [CrossRef] [Google Scholar]
  • Gaffuri P., Faravelli T., Ranzi E., Cernansky N.P., Miller D., d’Anna A., Ciajolo A. (1997) Comprehensive Kinetic Model for the Low-Temperature Oxidation of Hydrocarbons, AIChE J. 43, 5, 1278–1286. [CrossRef] [Google Scholar]
  • Gauthier T., Heraud J.P., Kressmann S., Verstraete J.J. (2007) Impact of vaporization in a residue hydroconversion process, Chemical Engineering Science 62, 18–20, 5409–5417. [CrossRef] [Google Scholar]
  • Gauthier T., Danial-Fortain P., Merdrignac I., Guibard I., Quoineaud A.A. (2008) Studies on the evolution of asphaltene structure during hydroconversion of petroleum residues, Catalysis Today 130, 429–438. [CrossRef] [Google Scholar]
  • Giddings J.C. (1987) Concepts and Comparisons in Multidimensional Separation, J. High Resolut. Chromatogr. 10, 319–323. [Google Scholar]
  • Gillespie D.T. (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys. 22, 403–434. [Google Scholar]
  • Glaude P.A., Warth V., Fournet R., Battin-Leclerc F., Côme G.M., Scacchi G. (1997) Modelling of n-Heptane and Iso-Octane Gas Phase Oxidation at Low Temperature by using Computer-Aided Designed Mechanisms, Bull. Soc. Chim. Belg. 106, 6, 343–348. [Google Scholar]
  • Glaude P.A., Warth V., Fournet R., Battin-Leclerc F., Côme G.M., Scacchi G. (1998) Modelling of the Oxidation of n-Octane and n-Decane using an Automatic Generation of Mechanisms, International Journal of Chemical Kinetics 30, 949–959. [CrossRef] [Google Scholar]
  • Green W.H., Barton P.I., Bhattacharjee B., Matheu D.M., Schwer D.A., Song J., Sumathi R., Carstensen H.H., Dean A.M., Grenda J.M. (2001) Computer Construction of Detailed Chemical Kinetic Models for Gas-Phase Reactors, Ind. Eng. Chem. Res. 40, 23, 5362–5370. [CrossRef] [Google Scholar]
  • Grenda J.M., Androulakis I.P., Dean A.M., Green W.H. (2003) Application of Computational Kinetic Mechanism Generation to Model the Autocatalytic Pyrolysis of Methane, Ind. Eng. Chem. Res. 42, 1000–1010. [CrossRef] [Google Scholar]
  • Guillaume D. (2006) Network Generation of Oligomerization Reactions: Principles, Industrial & Engineering Chemistry Research 45, 13, 4554–4557. [CrossRef] [Google Scholar]
  • Guillaume D., Surla K., Galtier P. (2003a) From Single Events Theory to Molecular Kinetics - Application to Industrial Process Modelling, Chemical Engineering Science 58, 21, 4861–4869. [CrossRef] [Google Scholar]
  • Guillaume D., Surla K., Galtier P. (2003b) Single Events Modelling. Part I: Review, Communication at ECCE4 - 4th European Congress of Chemical Engineering, Granada (Spain), Sept. 21–25. [Google Scholar]
  • Guillaume D., Valéry E., Surla K., Galtier P., Verstraete J., Schweich D. (2003c) Single Events Modelling. Part II: Extension to Large Networks, Communication at ECCE4 - 4th European Congress of Chemical Engineering, Granada (Spain), Sept. 21–25. [Google Scholar]
  • Guillaume D., Valéry E., Verstraete J.J., Surla K., Galtier P., Schweich D. (2011) Single Events Kinetic Modeling without Explicit Generation of Large Networks: Application to Hydrocracking of Long Paraffins, Oil & Gas Science and Technology – Rev. IFP Energies nouvelles 66, 3, 399–422. [CrossRef] [EDP Sciences] [Google Scholar]
  • Hammett L.P. (1937) The Effect of Structure upon the Reactions of Organic Compounds. Benzene Derivatives, J. Am. Chem. Soc. 59, 1, 96–103. [CrossRef] [Google Scholar]
  • Hatzimanikatis V., Li C.H., Ionita J.A., Broadbelt L.J. (2004) Metabolic Networks: Enzyme Function and Metabolite Structure, Current Opinion in Structural Biology 14, 300–306. [CrossRef] [PubMed] [Google Scholar]
  • Hatzimanikatis V., Li C.H., Ionita J.A., Henry C.S., Jankowski M.D., Broadbelt L.J. (2005) Exploring the Diversity of Complex Metabolic Networks, Bioinformatics 21, 1603–1609. [CrossRef] [PubMed] [Google Scholar]
  • Haulle F.X. (2002) Modélisation cinétique de l’hydrotraitement en lit fixe des résidus pétrolièrs : Étude de la réactivité des composés soufrés, Ph.D. Thesis, Université Paris VI, Paris (France). [Google Scholar]
  • Hendrickson J.B., Parks C.A. (1991) Generation and Enumeration of Carbon skeletons, J. Chem. Inf. Comput. Sci. 31, 101–107. [CrossRef] [Google Scholar]
  • Henry C.S., Broadbelt L.J., Hatzimanikatis V. (2007) Thermodynamics-based Metabolic Flux Analysis, Biophysical Journal 92, 5, 1792–1805. [CrossRef] [PubMed] [Google Scholar]
  • Henry C.S., Broadbelt L.J., Hatzimanikatis V. (2010) Discovery and Analysis of Novel Metabolic Pathways for the Biosynthesis of Industrial Chemicals: 3-Hydroxypropanoate, Biotechnology and Bioengineering 106, 3, 462–473. [PubMed] [Google Scholar]
  • Heyberger B., Battin-Leclerc F., Warth V., Fournet R., Come G.M., Scacchi G. (2001) Comprehensive Mechanism for the Gas-Phase Oxidation of Propene, Combustion and Flame 126, 1780–1802. [CrossRef] [Google Scholar]
  • Hill A., Tomshine J., Wedding E., Sotirpolous V., Kaznessis Y. (2008) SynBioSS: The Synthetic Biology Modeling Suite, Bioinformatics 24, 51, 2551–2553. [CrossRef] [PubMed] [Google Scholar]
  • Hillewaert L.P., Dierickx J.L., Froment G.F. (1988) Computer Generation of Reaction Schemes and Rate Equations for Thermal Cracking, AIChE J. 34, 1, 17–24. [CrossRef] [Google Scholar]
  • Hindmarsch A.C. (1980) LSODE and LSODI, Two New Initial Value Ordinary Differential Equation Solvers, A.C.M. Signum Newsletter 15, 4, 19–21. [Google Scholar]
  • Hindmarsch AC. (1983) ODEPACK, a Systematized Collection of ODE Solvers, in Scientific Computing, R.S. Stepleman et al. (eds), IMACS, North-Holland, Amsterdam, pp. 55–64. [Google Scholar]
  • Hirsch E., Altgelt K.H. (1970) Integrated Structural Analysis. Method for the Determination of Average Structural Parameters of Petroleum Heavy Ends, Anal. Chem. 42, 1330–1339. [CrossRef] [Google Scholar]
  • Hognon C., Simon Y., Marquaire P.-M. (2012) Hydrogen Production by Homogeneous Partial Oxidation of Propane, Energy & Fuels 26, 3, 1496–1508. [CrossRef] [Google Scholar]
  • Hou G., Klein M.T. (1999) Molecular Modeling of Gas Oil Hydrodesulfurization, Abstracts of Papers of the American Chemical Society 218, U610–U611. [Google Scholar]
  • Hudebine D. (2003) Reconstruction moléculaire de coupes pétrolières, Ph.D. Thesis, École Normale Supérieure de Lyon (France). [Google Scholar]
  • Hudebine D., Verstraete J.J. (2004) Molecular Reconstruction of LCO Gas Oils from Overall Petroleum Analyses, Chem. Eng. Sci. 59, 22–23, 4755–4763. [CrossRef] [Google Scholar]
  • Hudebine D., Verstraete J.J. (2011) Reconstruction of Petroleum Feedstocks by Entropy Maximization. Application to FCC Gasolines, Oil Gas Sci. Technol. – Rev. d’IFP Energies nouvelles 66, 3, 437–460. [CrossRef] [EDP Sciences] [Google Scholar]
  • Hudebine D., Verstraete J.J., Chapus T. (2011) Statistical Reconstruction of Gas Oil Cuts, Oil Gas Sci. Technol. – Rev. d’IFP Energies nouvelles 66, 3, 461–477. [CrossRef] [EDP Sciences] [Google Scholar]
  • Ihlenfeldt W.D., Gasteiger J. (1996) Computer-Assisted Planning of Organic Syntheses: The Second Generation of Programs, Angew. Chem. (International Edition in English) 34, 23–24, 2613–2633. [CrossRef] [Google Scholar]
  • Iyer S.D., Joshi P.V., Klein M.T. (1998) Automated Model Building and Modeling of Alcohol Oxidation in High Temperature Water, Environmental Progress 17, 4, 221–233. [CrossRef] [Google Scholar]
  • Jacob S.M., Gross B., Voltz S.E., Weekman V.W. (1976) A Lumping and Reaction Scheme for Catalytic Cracking, AIChE J. 22, 701–713. [CrossRef] [Google Scholar]
  • Jaffe S.B., Freund H., Olmstead W.N. (2005) Extension of Structure-Oriented Lumping to Vacuum Residua, Ind. Eng. Chem. Res. 44, 9840–9852. [CrossRef] [Google Scholar]
  • Jin F., Froment G.F. (2013) Automatic Generation of Reaction Networks for Complex Processes, Computers and Applied Chemistry 30, 1, 1–7. [Google Scholar]
  • Joback K.G., Reid R.C. (1987) Estimation of Pure-Component Properties from Group-Contributions, Chem. Eng. Commun. 57, 233–243. [CrossRef] [Google Scholar]
  • Johansen N.G., Ettre L.S., Miller R.L. (1983) Quantitative Analysis of Hydrocarbons by Structural Group Type in Gasolines and Distillates. I Gas Chromatography, J. Chromatogr. A 256, 393–417. [CrossRef] [Google Scholar]
  • Joshi P.V. (1998) Molecular and Mechanistic Modeling of Complex Process Chemistries, Ph.D. Thesis, University of Delaware, Delaware (USA). [Google Scholar]
  • Joshi P.V., Freund H., Klein M.T. (1999) Directed Kinetic Model Building: Seeding as a Model Reduction Tool, Energy & Fuels 13, 877–880. [CrossRef] [Google Scholar]
  • Joshi P.V., Iyer S.D., Klein M.T. (1998) Computer assisted modeling of gas oil Fluid Catalytic Cracking (FCC), Preprints - American Chemical Society. Division of Petroleum Chemistry 42, 3, 537–680, 654–656. [Google Scholar]
  • Karaba A., Zamostny P., Lederer J., Belohlav Z. (2013) Generalized Model of Hydrocarbons Pyrolysis Using Automated Reactions Network Generation, Ind. Eng. Chem. Res. 52, 44, 15407–15416. [CrossRef] [Google Scholar]
  • Katare S., Caruthers J.M., Delgass W.N., Venkatasubramanian V. (2004) An Intelligent System for Reaction Kinetic Modeling and Catalyst Design, Ind. Eng. Chem. Res. 43, 3484–3512. [CrossRef] [Google Scholar]
  • Klein M.T., Hou G., Quann R.J., Wei W., Liao K.H., Yang R.S.H., Campain J.A., Mazurek M.A., Broadbelt L.J. (2002) BioMol: Computer-Assisted Biological Modeling of Complex Chemical Mixtures and Biological Processes at the Molecular Level, Environ. Health Persp. 110, 6, 1025–1029. [CrossRef] [Google Scholar]
  • Klein M.T., Hou G., Bertolacini R.J., Broadbelt L.J., Kumar A. (2006) Molecular Modeling in Heavy Hydrocarbon Conversions, CRC Press, Taylor & Francis Group, Boca Raton, FL (USA). [Google Scholar]
  • Klinke D.J., Broadbelt L.J. (1999) Construction of a Mechanistic Model of Fischer-Tropsch Synthesis on Ni(111) and Co(0001) Surfaces, Chem. Eng. Sci. 54, 15–16, 3379–3389. [CrossRef] [Google Scholar]
  • Knight S.A. (1967) Analysis of Aromatic Petroleum Fractions by Means of Absorption Mode Carbon-13 NMR Spectroscopy, Chem. Ind. (November), 1920–1923. [Google Scholar]
  • Korre S.C. (1995) Quantitative structure/Reactivity correlations as a reaction engineering tool: Applications to hydrocracking of polynuclear aromatics, Ph.D. Thesis, University of Delaware, 1994. [Google Scholar]
  • Kowalewski I., Vandenbroucke M., Huc A.Y., Taylor M.J., Faulon J.L. (1996) Preliminary results on molecular modeling of asphaltenes using structure elucidation programs in conjunction with molecular simulation programs, Energy & Fuels 24, 10, 97–107. [CrossRef] [Google Scholar]
  • Kruse T.M., Woo O.S., Broadbelt L.J. (2001) Detailed Mechanistic Modeling of Polymer Degradation: Application to Polystyrene, Chemical Engineering Science 56, 3, 971–979. [CrossRef] [Google Scholar]
  • Kruse T.M., Woo O.S., Wong H.W., Kahn S.S., Broadbelt L.J. (2002) Mechanistic Modeling of Polymer Degradation: A Comprehensive Study of Polystyrene, Macromolecules 35, 20, 7830–7844. [CrossRef] [Google Scholar]
  • Kruse T.M., Wong H.W., Broadbelt L.J. (2003) Mechanistic Modeling of Polymer Pyrolysis: Polypropylene, Macromolecules 36, 25, 9594–9607. [CrossRef] [Google Scholar]
  • Kumar H., Froment G.F. (2007a) A Generalized Mechanistic Kinetic Model for the Hydroisomerization and Hydrocracking of Long-Chain Paraffins, Ind. Eng. Chem. Res. 46, 12, 4075–4090. [CrossRef] [Google Scholar]
  • Kumar H., Froment G.F. (2007b) Mechanistic Kinetic Modeling of the Hydrocracking of Complex Feedstocks, such as Vacuum Gas Oils, Ind. Eng. Chem. Res. 46, 18, 5881–5897. [CrossRef] [Google Scholar]
  • Kumar P., Thybaut J.W., Svelle S., Olsbye U., Marin G.B. (2013a) Single-Event Microkinetics for Methanol to Olefins on H-ZSM-5, Ind. Eng. Chem. Res. 52, 4, 1491–1507. [CrossRef] [Google Scholar]
  • Kumar P., Thybaut J.W., Teketel S., Svelle S., Beato P., Olsbye U., Marin G.B. (2013b) Single-Event MicroKinetics (SEMK) for Methanol to Hydrocarbons (MTH) on H-ZSM-23, Catal. Today 215, 224–232. [CrossRef] [Google Scholar]
  • Laxmi Narasimhan C.S., Thybaut J.W., Marin G.B., Martens J.A., Denayer J.F., Baron G.V. (2003a) Pore-Mouth Physisorption of Alkanes on ZSM-22: Estimation of Physisorption Enthalpies and Entropies by Additivity Method, J. Catal. 218, 1, 135–147. [CrossRef] [Google Scholar]
  • Laxmi Narasimhan C.S., Thybaut J.W., Marin G.B., Jacobs P.A., Martens J.A., Denayer J.F., Baron G.V. (2003b) Kinetic Modeling of Pore-Mouth Catalysis in the Hydroconversion of n-Octane on Pt-H-ZSM-22, J. Catal. 220, 2, 399–413. [CrossRef] [Google Scholar]
  • Laxmi Narasimhan C.S., Thybaut J.W., Marin G.B., Denayer J.F., Baron G.V., Martens J.A., Jacobs P.A. (2004) Relumped Single-Event Microkinetic Model for Alkane Hydrocracking on Shape-Selective Catalysts: Catalysis on ZSM-22 Pore Mouths, Bridge Acid Sites and Micropores, Chemical Engineering Science 59, 22–23, 4765–4772. [CrossRef] [Google Scholar]
  • Laxmi Narasimhan C.S., Thybaut J.W., Martens J.A., Jacobs P.A., Denayer J.F., Marin G.B. (2006) A Unified Single-Event Microkinetic Model for Alkane Hydroconversion in Different Aggregation States on Pt/H-USY Zeolites, J. Phys. Chem. B 110, 13, 6750–6758. [CrossRef] [PubMed] [Google Scholar]
  • Laxmi Narasimhan C.S., Thybaut J.W., Denayer J.F., Baron G.V., Jacobs P.A., Martens J.A., Marin G.B. (2007) Aggregation State Effects in Shape-Selective Hydroconversion, Ind. Eng. Chem. Res. 46, 25, 8710–8721. [CrossRef] [Google Scholar]
  • Le Lannic K. (2006) Désulfuration profonde de résidus pétroliers. Élaboration d’un modèle cinétique, Ph.D. Thesis, École Normale Supérieure de Lyon (France). [Google Scholar]
  • Levine S.E., Broadbelt L.J. (2009) Detailed Mechanistic Modeling of High-Density Polyethylene Pyrolysis: Low Molecular Weight Product Evolution, Polymer Degradation and Stability 94, 5, 810–822. [CrossRef] [Google Scholar]
  • Li G., Rabitz H. (1989) A General Analysis of Exact Lumping in Chemical Kinetics, Chem. Eng. Sci. 44, 1413–1430. [CrossRef] [Google Scholar]
  • Li C., Henry C.S., Jankowski M.D., Ionita J.A., Hatzimanikatis V., Broadbelt L.J. (2004) Computational discovery of biochemical routes to specialty chemicals, Chem. Eng. Sci. 59, 5051–5060. [CrossRef] [Google Scholar]
  • Libanati C. (1992) Monte Carlo Simulation of Complex Reactive Macromolecular Systems, Ph.D. Thesis, University of Delaware, Delaware (USA). [Google Scholar]
  • Liguras D.K., Allen D.T. (1989) Structural models for catalytic cracking. 1. Model compound reactions, Industrial & Engineering Chemistry Research 28, 6, 665–673; Structural models for catalytic cracking. 2. Reactions of simulated oil mixtures, Industrial & Engineering Chemistry Research 28, 6, 674–683. [CrossRef] [Google Scholar]
  • Linstrom P.J., Mallard W.G. (2015) NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg, MD (USA). [Google Scholar]
  • López Abelairas M., de Oliveira L.P., Verstraete J.J. (2016) Application of Monte Carlo Techniques to LCO Gas Oil Hydrotreating: Molecular Reconstruction and Kinetic Modelling, Catal. Today 271, 188–198. [CrossRef] [Google Scholar]
  • López García C. (2000) Analyse de la réactivité des composés soufrés dans les coupes pétrolières : Cinétique et modélisation de l’hydrotraitement, Ph.D. Thesis, Université Claude Bernard – Lyon (France). [Google Scholar]
  • López García C., Becchi M., Grenier-Loustalot M.F., Païsse O., Szymanski R. (2002) Analysis of Aromatic Sulfur Compounds in Gas Oils Using GC with Sulfur Chemiluminescence Detection and High-Resolution MS, Anal. Chem. 74, 3849–3857. [CrossRef] [PubMed] [Google Scholar]
  • López García C., Roy-Auberger M., Chapus T., Baco F. (2003) Analysis and kinetic modeling in ULSD hydrotreating, Abstr. Pap. Am. Chem. Soc. 226, U558. [Google Scholar]
  • López García C., Hudebine D., Schweitzer J.-M., Verstraete J.J., Ferré D. (2010) In-depth Modeling of Gas Oil Hydrotreating: From Feedstock Reconstruction to Reactor Stability Analysis, Catal. Today 150, 279–299. [CrossRef] [Google Scholar]
  • Lozano Blanco G., Thybaut J.W., Surla K., Galtier P., Marin G.B. (2006) Fischer-Tropsch Synthesis: Development of a Microkinetic Model for Metal Catalysis, Oil & Gas Science and Technology – Rev. IFP 61, 4, 489–496. [CrossRef] [EDP Sciences] [Google Scholar]
  • Lozano Blanco G., Thybaut J.W., Surla K., Galtier P., Marin G.B. (2008) Single-Event Microkinetic Model for Fischer-Tropsch Synthesis on Iron-Based Catalysts, Ind. Eng. Chem. Res. 47, 16, 5879–5891. [CrossRef] [Google Scholar]
  • Lozano Blanco G., Surla K., Thybaut J.W., Marin G.B. (2011) Extension of the Single-Event Methodology to Metal Catalysis: Application to Fischer-Tropsch Synthesis, Oil & Gas Science and Technology – Rev. IFP 66, 3, 423–435. [CrossRef] [EDP Sciences] [Google Scholar]
  • Magné-Drisch J. (1995) Cinétique des réactions d’hydrotraitement de distillats par décomposition en familles et par coupes étroites, Ph.D. Thesis, Université Pierre et Marie Curie, Paris (France). [Google Scholar]
  • Mahe L., Dutriez T., Courtiade M., Thiebaut D., Dulot H., Bertoncini F. (2011) Global approach for the selection of high temperature comprehensive two-dimensional gas chromatography experimental conditions and quantitative analysis in regards to sulfur-containing compounds in heavy petroleum cuts, Journal of Chromatography A 1218, 3, 534–544. [CrossRef] [PubMed] [Google Scholar]
  • Marcus R.A. (1968) Theoretical relations among rate constants, barriers, and Brönsted slopes of chemical reactions, J. Phys. Chem. 72, 891–899. [CrossRef] [Google Scholar]
  • Marrero-Morejón J., Pardillo-Fontdevila E. (1999) Estimation of Pure Compound Properties using Group-Interaction Contributions, AIChE J. 45, 615–621. [CrossRef] [Google Scholar]
  • Martens G.G., Froment G.F. (1999) Kinetic Modeling of Paraffins Hydrocracking based upon Elementary Steps and the Single Event Concept, in Reaction Kinetics and the Development of Catalytic Processes, G.F. Froment, KC. Waugh (eds), Elsevier Science BV, Studies in Surface Science and Catalysis 122, 333–340. [CrossRef] [Google Scholar]
  • Martens G.G., Marin G.B., Martens J.A., Jacobs P.A., Baron G.V. (2000) A Fundamental Kinetic Model for Hydrocracking of C8 to C12 Alkanes on Pt/US-Y Zeolites, Journal of Catalysis 195, 2, 253–267. [CrossRef] [Google Scholar]
  • Martens G.G., Marin G.B. (2001) Kinetics for Hydrocracking based on Structural Classes: Model Development and Application, AIChE J. 47, 7, 1607–1622. [CrossRef] [Google Scholar]
  • Martens G.G., Thybaut J.W., Marin G.B. (2001) Single Event Rate Parameters for Hydrocracking of Cycloalkanes on Pt/US-Y Zeolites, Ind. Eng. Chem. Res. 40, 8, 1832–1844. [CrossRef] [Google Scholar]
  • Martinis J.M., Froment G.F. (2006) Alkylation on Solid Acids. Part 2. Single-Event Kinetic Modeling, Ind. Eng. Chem. Res. 45, 954–967. [CrossRef] [Google Scholar]
  • Matheu D.M., Lada T.A., Green W.H, Dean A.M., Grenda J.M. (2001) Rate-based Screening of Pressure-dependent Reaction Networks, Computer Physics Communications 138, 3, 237–249. [CrossRef] [Google Scholar]
  • Matheu D.M., Green W.H., Grenda J.M. (2003a) Capturing pressure-dependence in automated mechanism generation: Reactions through cycloalkyl intermediates, International Journal of Chemical Kinetics 35, 3, 95–119. [CrossRef] [Google Scholar]
  • Matheu D.M., Dean A.M., Grenda J.M., Green W.H. (2003b) Mechanism Generation with Integrated Pressure Dependence: A New Model for Methane Pyrolysis, J. Phys. Chem. A 107, 8552–8565. [CrossRef] [Google Scholar]
  • Mayeno A.N., Yang R.S.H., Reisfeld B. (2005) Biochemical Reaction Network Modeling: Predicting Metabolism of Organic Chemical Mixtures, Environmental Science and Technology 39, 5363–5371. [CrossRef] [Google Scholar]
  • Miller R.L., Ettre L.S., Johansen N.G. (1983) Quantitative Analysis of Hydrocarbons by Structural Group Type in Gasolines and Distillates : II. Liquid Chromatography, J. Chromatogr. A 259, 393–412. [CrossRef] [Google Scholar]
  • Mitsios M., Guillaume D., Galtier P., Schweich D. (2009) Single-Event Microkinetic Model for Long-Chain Paraffin Hydrocracking and Hydroisomerization on an Amorphous Pt/SiO2-Al2O3 Catalyst, Ind. Eng. Chem. Res. 48, 3284–3292. [Google Scholar]
  • Mizan T.I., Hou G., Klein M.T. (1998) Mechanistic Modeling of the Hydroisomerization of High Carbon Number Waxes, AIChE Meeting New Orleans. [Google Scholar]
  • Mizan T.I., Klein M.T. (1999) Computer-assisted Mechanistic Modeling of n-Hexadecane Hydroisomerization over Various Bifunctional Catalysts, Catal. Today 50, 1, 159–172. [CrossRef] [Google Scholar]
  • Mochida I., Yoneda Y. (1967a) Linear Free Energy Relationships in Heterogeneous Catalysis. I. Dealkylation of Alkylbenzenes on Cracking Catalysts, J. Catal. 7, 386–392. [CrossRef] [Google Scholar]
  • Mochida I., Yoneda Y. (1967b) Linear Free Energy Relationships in Heterogeneous Catalysis. II. Dealkylation and Isomerization Reactions on Various Solid Catalysts, J. Catal. 7, 393–396. [CrossRef] [Google Scholar]
  • Mochida I., Yoneda Y. (1967c) Linear Free Energy Relationships in Heterogeneous Catalysis. III. Temperature Effects in Dealkylation of Alkylbenzenes on the Cracking Catalysts, J. Catal. 7, 223–230. [CrossRef] [Google Scholar]
  • Mondello L., Lewis A.C., Bartle K.D. (2002) Multidimensional Chromatography, John Wiley & Sons, Inc. [Google Scholar]
  • Montgomery D., Boyd M. (1959) New Method of Hydrocarbon Structural Group Analysis, Analytical Chemistry 31, 8, 1290–1298. [CrossRef] [Google Scholar]
  • Moustafa T., Froment G.F. (2003) Kinetic Modeling of Coke Formation and Deactivation in the Catalytic Cracking of Vacuum Gas Oil, Ind. Eng. Chem. Res. 42, 1, 14–25. [CrossRef] [Google Scholar]
  • Németh A., Vidóczy T., Héberger K., Kúti Z., Wágner J. (2002) MECHGEN: Computer Aided Generation and Reduction of Reaction Mechanisms, J. Chem. Inf. Comput. Sci. 42, 2, 208–214. [CrossRef] [PubMed] [Google Scholar]
  • Neurock M. (1992) A Computational Chemical Reaction Engineering Analysis of Complex Heavy Hydrocarbon Reaction Systems, Ph.D. Thesis, University of Delaware, Delaware (USA). [Google Scholar]
  • Neurock M., Nigam A., Trauth D.M., Klein M.T. (1994) Molecular Representation of Complex Hydrocarbon Feedstocks through Efficient Characterization and Stochastic Algorithms, Chem. Eng. Sci. 49, 4153–4177. [CrossRef] [Google Scholar]
  • Park T.-Y., Froment G.F. (2001a) Kinetic Modeling of the MTO Process – I. Model Formulation, Ind. Eng. Chem. Res. 40, 4172–4186. [CrossRef] [Google Scholar]
  • Park T.-Y., Froment G.F. (2001b) Kinetic Modeling of the MTO Process – II. Experimental Results, Model Discrimination and Parameter Estimation, Ind. Eng. Chem. Res. 40, 4187–4196. [CrossRef] [Google Scholar]
  • Park T.-Y., Froment G.F. (2004) Analysis of Fundamental Reaction Rates in the Methanol-To-Olefins Process on ZSM-5 as a Basis for Reactor Design and Operation, Ind. Eng. Chem. Res. 43, 3, 682–689. [CrossRef] [Google Scholar]
  • Peng B. (1999) Molecular Modelling of Petroleum Processes, Ph.D. Thesis, University of Manchester - Institute of Science and Technology, Manchester (UK). [Google Scholar]
  • Petrakis L., Allen D. (1987) NMR for Liquid Fossil Fuels, Analytical Spectroscopy Library – Volume 1, Elsevier. [Google Scholar]
  • Petzold L. (1983) Automatic Selection of Method for Stiff and Non-Stiff Systems of ODEs, SIAM Journal of Scientific Computing 4, 1, 136–148. [Google Scholar]
  • Pfaendtner J., Broadbelt L.J. (2008a) Mechanistic Modeling of Lubricant Degradation. 1. Structure−Reactivity Relationships for Free-Radical Oxidation, Ind. Eng. Chem. Res. 47, 9, 2886–2896. [CrossRef] [Google Scholar]
  • Pfaendtner J., Broadbelt L.J. (2008b) Mechanistic Modeling of Lubricant Degradation. 2. The Autoxidation of Decane and Octane, Ind. Eng. Chem. Res. 47, 9, 2897–2904. [CrossRef] [Google Scholar]
  • Pitault I., Nevicato D., Forissier M., Bernard J.-R. (1994) Kinetic Model Based on a Molecular Description for Catalytic Cracking of Vacuum Gas Oil, Chem. Eng. Sci. 49, 4249–4262. [CrossRef] [Google Scholar]
  • Prickett S.E., Mavrovouniotis M.L. (1997a) Construction of Complex Reaction Systems – I. Reaction Description Language, Comput. Chem. Eng. 21, 11, 1219–1235. [CrossRef] [Google Scholar]
  • Prickett S.E., Mavrovouniotis M.L. (1997b) Construction of Complex Reaction Systems – II. Molecule Manipulation and Reaction Application Algorithms, Comput. Chem. Eng. 21, 11, 1237–1254. [CrossRef] [Google Scholar]
  • Prickett S.E., Mavrovouniotis M.L. (1997c) Construction of Complex Reaction Systems – III. An Example: Alkylation of Olefins, Comput. Chem. Eng. 21, 12, 1325–1337. [CrossRef] [Google Scholar]
  • Pyl S.P., Hou Z., Van Geem K.M., Reyniers M.-F., Marin G.B., Klein M.T. (2011) Modeling the Composition of Crude Oil Fractions Using Constrained Homologous Series, Ind. Eng. Chem. Res. 50, 10850–10858. [CrossRef] [Google Scholar]
  • Qian K., Rodgers R.P., Hendrickson C.L., Emmett M.R., Marshall A.G. (2001) Reading Chemical Fine Print: Resolution and Identification of 3000 Nitrogen-Containing Aromatic Compounds from a Single Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrum of Heavy Petroleum Crude Oil, Energy & Fuels 15, 492–498. [CrossRef] [Google Scholar]
  • Qian S.A., Li C.F., Zhang P.Z. (1984) Study of structural parameters on some petroleum aromatic fractions by 1H NMR/IR and 13C, 1H NMR spectroscopy, Fuel 63, 268–273. [CrossRef] [Google Scholar]
  • Quann R.J., Jaffe S.B. (1992) Structure-Oriented Lumping: Describing the Chemistry of Complex Hydrocarbon Mixtures, Ind. Eng. Chem. Res. 31, 11, 2483–2497. [CrossRef] [Google Scholar]
  • Quann R.J., Jaffe S.B. (1996) Building Useful Models of Complex Reaction Systems in Petroleum Refining, Chem. Eng. Sci. 51, 10, 1615–1635. [CrossRef] [Google Scholar]
  • Quann R.J. (1998) Modeling the Chemistry of Complex Petroleum Mixtures, Environmental Health Perspectives 106, 6, 1441–1448. [CrossRef] [PubMed] [Google Scholar]
  • Quintana-Solórzano R., Thybaut J.W., Marin G.B., Lødeng R., Holmen A. (2005) Single-Event MicroKinetics for Coke Formation in Catalytic Cracking, Catal. Today 107, 8, 619–629. [CrossRef] [Google Scholar]
  • Quintana-Solórzano R., Thybaut J.W., Marin G.B. (2007a) A Single-Event Microkinetic Analysis of the Catalytic Cracking of (Cyclo)Alkanes on an Equilibrium Catalyst in the Absence of Coke Formation, Chem. Eng. Sci. 62, 18–20, 5033–5038. [CrossRef] [Google Scholar]
  • Quintana-Solórzano R., Thybaut J.W., Galtier P., Marin G.B. (2007b) Single-Event MicroKinetics for Coke Formation during the Catalytic Cracking of (Cyclo)Alkane/1-Octene Mixtures, Catalysis Today 127, 1, 17–30. [CrossRef] [Google Scholar]
  • Quintana-Solórzano R., Thybaut J.W., Galtier P., Marin G.B. (2010) Simulation of an Industrial Riser for Catalytic Cracking in the Presence of Coking using Single-Event MicroKinetics, Catalysis Today 150, 3–4, 319–331. [CrossRef] [Google Scholar]
  • Rangarajan S., Bhan A., Daoutidis P. (2010) Rule-Based Generation of Thermochemical Routes to Biomass Conversion, Ind. Eng. Chem. Res. 49, 21, 10459–10470. [CrossRef] [Google Scholar]
  • Ranzi E., Faravelli T., Gaffuri P., Sogaro A. (1995) Low Temperature Combustion – Automatic-Generation of Oxidation Reactions and Lumping Procedures, Combust. Flame 102, 179–192. [CrossRef] [Google Scholar]
  • Ratkiewicz A., Truong T.N. (2003) Application of Chemical Graph Theory for Automated Mechanism Generation, J. Chem. Inf. Comput. Sci. 43, 36–44. [CrossRef] [PubMed] [Google Scholar]
  • Ratkiewicz A., Truong T.N. (2006) Automated Mechanism Generation: From Symbolic Calculation to Complex Chemistry, International Journal of Quantum Chemistry 106, 1, 244–255. [CrossRef] [Google Scholar]
  • Read R.C. (1976) The Enumeration of Acyclic Chemical Compounds, in Balaban A.T. (ed.), Chemical Applications of Graph Theory, Academic Press, New York. [Google Scholar]
  • Revellin N., Dulot H., López García C., Baco F., Jose J. (2005) Specific nitrogen boiling point profiles of vacuum gasoils, Energy & Fuels 19, 6, 2438–2444. [CrossRef] [Google Scholar]
  • Sato S. (1997) The Development of a Support Program for the Analysis of Average Molecular Structures by Personal Computer, Sekiyu Gakkaishi (in Japanese) 40, 46–51. [CrossRef] [Google Scholar]
  • Sato S., Matsumura A., Urushigawa Y., Metwally M., Al-Muzaini S. (1998) Structural Analysis of Weathered Oil from Kuwait’s Environment, Environment International 24, 1–2, 77–87. [CrossRef] [Google Scholar]
  • Schweitzer J.M., Galtier P., Schweich D. (1999) A Single Events Kinetics Model for Hydrocracking of Paraffins in a Three-Phase Reactor, Chemical Engineering Science 54, 2441–2452. [CrossRef] [Google Scholar]
  • Semenov N.N. (1954) O Nekotorykh Problemakh Khimicheskoi Kinetiki i Reaktsionnoi Sposobnosti (On Some Problems in Chemical Kinetics and Reactivity), Acad. Sci. USSR, Moscow. [Google Scholar]
  • Semenov N.N. (1958) Some Problems in Chemical Kinetics and Reactivity, Princeton University Press, Princeton (NJ), Vol. I & Vol. II. [Google Scholar]
  • Shahrouzi J.R. (2010) Simulation et réduction de schéma cinétique de systèmes réctionnels complexes par des méthodes stochastiques (application à l’oligomérisation), Ph.D. Thesis, Université Pierre et Marie Curie, Paris (France). [Google Scholar]
  • Shahrouzi J.R., Guillaume D., Rouchon P., Da Costa P. (2008) Stochastic Simulation and Single Events Kinetic Modeling: Application to Olefin Oligomerization, Ind. Eng. Chem. Res. 47, 4308–4316. [CrossRef] [Google Scholar]
  • Shannon C.E. (1948) A Mathematical Theory of Communication, Bell Syst. Tech. J. 27, 379–423, 623–656. [Google Scholar]
  • Sheremata J.M., Gray M.R., Dettman H.D., McCaffrey W.C. (2004) Quantitative Molecular Representation and Sequential Optimization of Athabasca Asphaltenes, Energy & Fuels 18, 1377–1384. [CrossRef] [Google Scholar]
  • Simon Y., Baronne F., Marquaire P.-M. (2007) Kinetic Modeling of the Oxidative Coupling of Methane, Ind. Eng. Chem. Res. 46, 7, 1914–1922. [CrossRef] [Google Scholar]
  • Song J., Raman S., Yu J., Wijaya C.D., Stephanopoulos G., Green W.H. (2003) Development of Automatic Chemical Reaction Mechanism Generation Software Using Object-Oriented Technology, Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem. 48, 2, 516–517. [Google Scholar]
  • Sotelo-Boyás R., Froment G.F. (2009) Fundamental Kinetic Modeling of Catalytic Reforming, Ind. Eng. Chem. Res. 48, 3, 1107–1119. [CrossRef] [Google Scholar]
  • Speight J.G. (1970) A Structural Investigation of the Constituents of Athabasca Bitumen by Proton Magnetic Resonance Spectroscopy, Fuel 49, 76–90. [CrossRef] [Google Scholar]
  • Speight J.G. (1991) The Chemistry and Technology of Petroleum, 2nd ed., CRC Press. [Google Scholar]
  • Stangeland B.E. (1974) A Kinetic Model for the Prediction of Hydrocracker Yields, Industrial & Engineering Chemistry Process Design and Development 13, 1, 71–76. [CrossRef] [Google Scholar]
  • Surla K., Vleeming H., Guillaume D., Galtier P. (2004) A single events kinetic model: n-butane isomerization, Chemical Engineering Science 59, 22–23, 4773–4779. [CrossRef] [Google Scholar]
  • Surla K., Guillaume D., Verstraete J.J., Galtier P. (2011) Kinetic Modeling using the Single-Event Methodology: Application to the Isomerization of Light Paraffins, Oil & Gas Science and Technology – Revue d’IFP Energies nouvelles 66, 3, 343–365. [CrossRef] [EDP Sciences] [Google Scholar]
  • Susnow R.G., Dean A.M., Green W.H., Peczak P., Broadbelt L.J. (1997) Rate-Based Construction of Kinetic Models for Complex Systems, J. Phys. Chem. A 101, 20, 3731–3740. [CrossRef] [Google Scholar]
  • Suzuki T., Itoh M., Takegami Y., Watanabe Y. (1982) Chemical Structure of Tar-Sand Bitumens by 13C and 1H NMR Spectroscopic Methods, Fuel 61, 402–410. [CrossRef] [Google Scholar]
  • Svoboda G.D., Vynckier E., Debrabandere B., Froment G.F. (1995) Single Event Rate Parameters for Paraffin Hydrocracking on a Pt/US-Y Zeolite, Industrial & Engineering Chemistry Research 34, 3793–3800. [CrossRef] [Google Scholar]
  • Takegami Y., Watanabe Y., Suzuki T., Mitsudo T., Itoh M. (1980) Structural Investigation on Column-Chromatographed Vacuum Residues of Various Petroleum Crudes by 13C Nuclear Magnetic Resonance Spectroscopy, Fuel 59, 253–259. [CrossRef] [Google Scholar]
  • Temkin O.N., Zeigarnik A.V., Kuz’min A.E., Bruk L.G., Slivinskii E.V. (2002) Construction of the Reaction Networks for Heterogeneous Catalytic Reactions: Fischer-Tropsch Synthesis and Related Reactions, Russian Chemical Bulletin, International Edition 51, 1, 1–36. [Google Scholar]
  • Teng S.T., Williams A.D. (1994) Detailed Hydrocarbon Analysis of Gasoline by GC-MS (SI-PIONA), J. High Resolut. Chromatogr. 17, 469–475. [Google Scholar]
  • Thybaut J.W., Marin G.B., Baron G.V., Jacobs P.A., Martens J.A. (2001) Alkene Protonation Enthalpy Determination from Fundamental Kinetic Modeling of Alkane Hydroconversion on Pt/H-(US)Y-Zeolite, J. Cat. 202, 324–339. [CrossRef] [Google Scholar]
  • Thybaut J.W., Marin G.B. (2003) Kinetic Modeling of the Conversion of Complex Hydrocarbon Feedstocks by Acid Catalysis, Chem. Eng. Technol. 26, 4, 509–514. [CrossRef] [Google Scholar]
  • Thybaut J.W., Choudhury I.R., Denayer J.F., Baron G.V., Jacobs P.A., Martens J.A., Marin G.B. (2009) Design of Optimum Zeolite Pore System for Central Hydrocracking of Long-Chain n-Alkanes Based on a Single-Event MicroKinetic Model, Topics in Catalysis 52 9, 1251–1260. [CrossRef] [Google Scholar]
  • Toch K., Thybaut J.W., Marin G.B. (2015) Ethene oligomerization on Ni-SiO2-Al2O3: Experimental investigation and Single-Event MicroKinetic modelling, Appl. Cat. A: General 489, 292–304. [CrossRef] [Google Scholar]
  • Tomlin A.S., Turányi T., Pilling M.J. (1997) Mathematical Tools for the Construction, Investigation and Reduction of Combustion Mechanisms, in: M.J. Pilling (ed.), Low-Temperature Combustion and Autoignition, Elsevier, Amsterdam. [Google Scholar]
  • Toulhoat H., Hudebine D., Raybaud P., Guillaume D., Kressmann S. (2005) THERMIDOR: A New Model for Combined Simulation of Operations and Optimization of Catalysts in Residues Hydroprocessing Units, Catal. Today 109, 135–153. [CrossRef] [Google Scholar]
  • Trauth D.M., Stark S.M., Petti T.F., Neurock M., Klein M.T. (1994) Representation of the Molecular Structure of Petroleum Resid through Characterization and Monte Carlo Modeling, Energy & Fuels 8, 576–580. [CrossRef] [Google Scholar]
  • Tuan H.P., Janssen H.M., Cramers C.A., Kuiper-van Loo E.M., Vlap H. (1995) Evaluation of the Performance of Various Universal and Selective Detectors for Sulfur Determination in Natural Gas, J. High Resolut. Chromatogr. 18, 333–342. [CrossRef] [Google Scholar]
  • Ugi I., Bauer J., Bley K., Dengler A., Dietz A., Fontain E., Gruber B., Herges R., Knauer M., Reitsam K., Stein N. (1993) Computer Assisted Solution of Chemical Problems – The Historical Development and the Present State of the Art of a New Discipline of Chemistry, Angew. Chem. Int. Ed. Engl. 32, 201–227. [CrossRef] [Google Scholar]
  • Valdes-Perez R.E., (1992a) Algorithm to generate reaction pathways for computer-assisted elucidation, Journal of Comparative Chemistry 13, 9, 1079–1088. [CrossRef] [Google Scholar]
  • Valdes-Perez R.E., (1992b) A necessary condition for catalysis in reaction pathways, Journal of Physical Chemistry 96, 5, 2394–2396. [CrossRef] [Google Scholar]
  • Valdes-Perez R.E. (1994) Human/computer interactive elucidation of reaction mechanisms: application to catalyzed hydrogenolysis of ethane, Catalysis Letters 28, 1, 79–87. [CrossRef] [Google Scholar]
  • Valdes-Perez R.E., Zeigarnik A.V. (1997) Interactive elucidation without programming of reaction mechanisms in heterogeneous catalysis, Journal of Molecular Catalysis A: Chemical 119, 1–3, 405–414. [CrossRef] [Google Scholar]
  • Valéry E. (2002) Application de la théorie des événements constitutifs à l’hydrocraquage de paraffines Lourdes, Ph.D. Thesis, Université Claude Bernard – Lyon (France). [Google Scholar]
  • Valéry E., Guillaume D., Surla K., Galtier P., Verstraete J.J., Schweich D. (2007) Kinetic Modeling of Acid Catalyzed Hydrocracking of Heavy Molecules: Application to Squalane, Ind. Eng. Chem. Res. 46, 14, 4755–4763. [CrossRef] [Google Scholar]
  • Van de Vijver R., Vandewiele N.M., Vandeputte A.G., Van Geem K.M., Reyniers M.F., Green W.H., Marin G.B. (2015a) Rule-based ab initio kinetic model for alkyl sulfide pyrolysis, Chem. Eng. Sci. 278, 385–393. [CrossRef] [Google Scholar]
  • Van de Vijver R., Vandewiele N.M., Bhoorasingh P.L., Slakman B.L., Khanshan F.S., Carstensen H.H., Reyniers M.F., Marin G.B., West R.H., Van Geem K.M. (2015b) Automatic Mechanism and Kinetic Model Generation for Gas- and Solution-Phase Processes: A Perspective on Best Practices, Recent Advances, and Future Challenges, International Journal of Chemical Kinetics 47, 4, 199–231. [CrossRef] [Google Scholar]
  • Van Geem K.M., Reyniers M.F., Marin G.B., Song J., Mattheu D.M., Green W.H. (2006) Automatic Network Generation using RMG for Steam Cracking of n-Hexane, AIChE J. 52, 2, 718–730. [CrossRef] [Google Scholar]
  • Van Geem K.M., Hudebine D., Reyniers M.-F., Wahl F., Verstraete J.J., Marin G.B. (2007) Molecular Reconstruction of Naphtha Steam Cracking Feedstocks Based on Commercial Indices, Comput. Chem. Eng. 31, 1020–1034. [CrossRef] [Google Scholar]
  • Van Geem K.M., Reyniers M.F., Marin G.B. (2008) Challenges of Modeling Steam Cracking of Heavy Feedstocks, Oil & Gas Science and Technology – Rev. IFP 63, 1, 79–94. [CrossRef] [EDP Sciences] [Google Scholar]
  • van Krevelen D.W. (1952) Einiger neuere Einsichten, die chemische Struktur in Steinkohlen betreffend, Brennstoff-Chemie 33, 260–268. [Google Scholar]
  • Vandegehuchte B.D., Thybaut J.W., Martinez A., Arribas M.A., Marin G.B. (2012) n-Hexadecane hydrocracking Single-Event MicroKinetics on Pt/H-beta, Applied Catalysis A: General 441, 10–20. [CrossRef] [Google Scholar]
  • Vandegehuchte B.D., Thybaut J.W., Martens J.A., Marin G.B. (2015) Maximizing n-alkane hydroisomerization: the interplay of phase, feed complexity and zeolite catalyst mixing, Catalysis Science & Technology 5, 4, 2053–2058. [CrossRef] [Google Scholar]
  • Vandewiele N.M., Van Geem K.M., Reyniers M.F., Marin G.B. (2012) Genesys: Kinetic model construction using chemo-informatics, Chem. Eng. Journal 207–208, 526–538. [CrossRef] [Google Scholar]
  • Vendeuvre C., Ruiz-Guerrero R., Bertoncini F., Duval L., Thiébaut D., Hennion M.-C. (2005) Characterisation of Middle-Distillates by Comprehensive Two-Dimensional Gas Chromatography (GC×GC): A Powerful Alternative for Performing Various Standard Analyses of Middle-Distillates, J. Chromatogr. A 1086, 21–28. [CrossRef] [PubMed] [Google Scholar]
  • Verstraete J. (1997) Kinetische Studie van de Katalytische Reforming van Nafta over een Pt-Sn/Al2O3 Katalysator, Ph.D. Thesis, Universiteit Gent (Belgium). [Google Scholar]
  • Verstraete J.J., Revellin N., Dulot H., Hudebine D. (2004) Molecular Reconstruction of Vacuum Gas Oils, Abstr. Pap. Am. Chem. Soc. 227, U1070. [Google Scholar]
  • Verstraete J.J., Le Lannic K., Guibard I. (2007) Modeling Fixed-Bed Residue Hydrotreating Processes, Chem. Eng. Sci. 62, 18–20, 5402–5408. [CrossRef] [Google Scholar]
  • Verstraete J.J., Schnongs P., Dulot H., Hudebine D. (2010) Molecular Reconstruction of Heavy Petroleum Residue Fractions, Chem. Eng. Sci. 65, 304–312. [CrossRef] [Google Scholar]
  • Vleduts G.E. (1963) Concerning One System of Classification and Codification of Organic Reactions, Inf. Storage Retr. 1, 117–146. [CrossRef] [Google Scholar]
  • Vynckier E., Froment G.F. (1991) Modeling of the Kinetics of Complex Processes based upon Elementary Steps, in: Astarita G., Sandler S.I. (eds), Kinetic and Thermodynamic Lumping of Multicomponent Mixtures, Elsevier B.V., Amsterdam, pp. 131–161. [CrossRef] [Google Scholar]
  • Warth V., Battin-Leclerc F., Fournet R., Glaude P.A., Come G.M., Scacchi G. (2000) Computer-Based Generation of Reaction Mechanisms for Gas-Phase Oxidation, Comput. Chem. 24, 541–560. [CrossRef] [PubMed] [Google Scholar]
  • Watson B.A., Klein M.T., Harding R.H. (1996) Mechanistic Modeling of n-Heptane Cracking on HZSM-5, Ind. Eng. Chem. Res. 35, 1506–1516. [CrossRef] [Google Scholar]
  • Wauquier J.-P. (1994) Crude Oil - Petroleum Products - Process Flowsheets, in Petroleum Refining, Editions Technip, Paris. [Google Scholar]
  • Weekman V.W., Nace D.M. (1970) Kinetics of Catalytic Cracking Selectivity in Fixed, Moving, and Fluid Bed Reactors, AIChE J. 16, 397–404. [CrossRef] [Google Scholar]
  • Wei J., Kuo J.C.W. (1969) Lumping Analysis in Monomolecular Reaction Systems. Analysis of the Exactly Lumpable System. Ind. Eng. Chem. Fundam. 8, 114–123. [CrossRef] [Google Scholar]
  • Wei W., Bennett C.A., Tanaka R., Hou G., Klein M.T. (2008) Detailed Kinetic Models for Catalytic Reforming, Fuel Processing Technology 89, 4, 344–349. [CrossRef] [Google Scholar]
  • Willems P.A., Froment G.F. (1988a) Kinetic Modeling of the Thermal Cracking of Hydrocarbons. 1. Calculation of Frequency Factors, Ind. Eng. Chem. Res. 27, 11, 1959–1966. [CrossRef] [Google Scholar]
  • Willems P.A., Froment G.F. (1988b) Kinetic Modeling of the Thermal Cracking of Hydrocarbons. 2. Calculation of Activation Energies, Ind. Eng. Chem. Res. 27, 11, 1966–1971. [CrossRef] [Google Scholar]
  • Williams R.B. (1958) Characterization of Hydrocarbons in Petroleum by Nuclear Magnetic Resonance Spectrometry, in: Symposium on composition of petroleum oils, determination and evaluation, ASTM Spec. Technol. Publ. 224, 168–194. [Google Scholar]
  • Wold S., Sjöström M. (1978) Linear Free energy Relationships as Tools for Investigating Chemical Similarity. Theory and Practice, in: Chapman N.B., Shorter J. (eds), Correlation analysis in Chemistry, Plenum Press, New York (NY), pp. 1–54. [CrossRef] [Google Scholar]
  • Wong H.W., Li X., Swihart M.T., Broadbelt L.J. (2004) Detailed Kinetic Modeling of Silicon Nanoparticle Formation Chemistry via Automated Mechanism Generation, J. Phys. Chem. A 108, 46, 10122–10132. [CrossRef] [Google Scholar]
  • Wu Y., Zhang N. (2010) Molecular Characterization of Gasoline and Diesel Streams, Ind. Eng. Chem. Res. 49, 12773–12782. [CrossRef] [Google Scholar]
  • Xue G.P., Weng H.X., Thybaut J.W., Marin G.B. (2014) Catalytic Cracking of Cycloparaffins Admixed with Olefins: 2. Single-Event Microkinetic (SEMK) Assessment, China Petroleum Processing and Petrochemical Technology 16, 2, 84–90. [Google Scholar]
  • Zeigarnik A.V., Valdés-Pérez R.E., Temkin O.N., Bruk L.G., Shalgunov S.I. (1997) Computer-Aided Mechanism Elucidation of Acetylene Hydrocarboxylation to Acrylic Acid Based on a Novel Union of Empirical and Formal Methods, Organometallics 16, 14, 3114–3127. [CrossRef] [Google Scholar]
  • Zhang Y. (1999) A Molecular Approach for Characterisation and Property Predictions of Petroleum Mixtures with Applications to Refinery Modelling, Ph.D. Thesis, University of Manchester - Institute of Science and Technology, Manchester (UK). [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.