Dossier: Methodology for Process Development at IFP Energies nouvelles
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Number 3, May–June 2016
Dossier: Methodology for Process Development at IFP Energies nouvelles
Article Number 44
Number of page(s) 19
DOI https://doi.org/10.2516/ogst/2015032
Published online 06 June 2016
  • Albal R.S., Shah Y.T., Carr N.L., Bell A.T. (1984) Mass transfer coefficients and solubilities for hydrogen and carbon monoxide under Fischer-Tropsch conditions, Chem. Eng. Sci. 39, 5, 905–907. [CrossRef]
  • Bartholomew C.H. (2001) Mechanisms of catalyst deactivation, Applied Catal. A: General 212, 17, 60. [CrossRef]
  • Bartholomew C.H., Farrauto R.J. (2006) Fundamental of Industrial Catalytic Processes, 2nd edn., Wiley & Sons.
  • Bertoncini F., Marion M., Brodusch N., Esnault S. (2009) Élucider la composition moléculaire des produits obtenus par la réaction de Fischer-Tropsch catalysée par le cobalt par chromatographie gazeuse bidimensionnelle : méthodologie et application, Oil & Gas Science and Technology - Rev. IFP 64, 1, 79–90. [CrossRef] [EDP Sciences]
  • Bukur D.B., Patel S.A., Matheo R. (1987) Hydrodynamic studies in Fischer-Tropsch derived waxes in a bubble column, Chem. Eng. Comm. 60, 63–78. [CrossRef]
  • Charpentier J.C. (1981) Mass-transfer rates in gas-liquid absorbers and reactors, Advances in Chemical Engineering 11, 1–133. [CrossRef]
  • Dry M.E. (2002) The Fischer-Tropsch process: 1950-2000, Catalysis Today 71, 227–241. [CrossRef]
  • Degaleesan S., Dudukovic M.P., Toseland B.A., Bhatt B.L. (1997) A two-compartment convective-diffusion model for slurry bubble column reactors, Ind. Eng. Chem. Res. 36, 4670–4680. [CrossRef]
  • den Breejen J.P., Sietsma J.R.A., Friedrich H., Bitter J.H., de Jong K.P. (2010) Design of supported cobalt catalysts with maximum activity for the Fischer–Tropsch synthesis, J. Catal. 270, 146, 152. [CrossRef]
  • Eggenhuisen T.M., Munnik P., Talsma H., de Jongh P.E., de Jong K.P. (2012) Freeze-drying for controlled nanoparticle distribution in Co/SiO2 Fischer–Tropsch catalysts, J. Catal. 297, 306, 313.
  • Enger B.C., Fossan A.-L., Borg O., Rytter E., Holmen A. (2011) Modified alumina as catalyst support for cobalt in the Fischer–Tropsch synthesis, J. Catal. 284, 9, 22. [CrossRef]
  • Fischer N., van Steen E., Claeys M. (2013) Structure sensitivity of the Fischer–Tropsch activity and selectivity on alumina supported cobalt catalysts, J. Catal. 299, 67, 80. [CrossRef]
  • Forbes A. (2009) Economics of GTL, SMI GTL Conference, London, 27-28 Oct.
  • Forret A., Schweitzer J.-M., Gauthier T., Krishna R., Schweich D. (2003) Influence of scale on the hydrodynamics of bubble column reactors: An experimental study in columns of 0.1, 0.4 and 1 m diameters, Chem. Eng. Sci. 58, 719–724. [CrossRef]
  • Forret A., Schweitzer J.-M., Gauthier T., Krishna R., Schweich D. (2006) Scale up of slurry bubble reactors, Oil & Gas Science and Technology – Rev. IFP. 61, 443–458. [CrossRef] [EDP Sciences]
  • Iglesia E. (1997) Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts, Applied Catal. 161, 59, 78. [CrossRef]
  • Krishna R., Ellenberger J. (1996) Gas holdup in bubble column reactors operating in the churn-turbulent regime, AIChE J. 42, 2627–2634. [CrossRef]
  • Krishna R., Urseanu M.I., van Baten J.M., Ellenberger J. (1999) Influence of scale on the hydrodynamics of bubble columns operating in the churn-turbulent regime: experiments vs. Eulerian simulations, Chem. Eng. Sci. 54, 4903–4911. [CrossRef]
  • Krishna R., Urseanu M.I., de Swart J.W.A., Ellenberger J. (2000) Gas holdup in bubble columns: operation with concentrated slurries versus high viscosity liquid, The Canadian Journal of Chemical Engineering 78, 442–447. [CrossRef]
  • Miyauchi T., Furusaki S., Morooka S., Ikeda Y. (1981) Transport phenomena and reaction in fluidized catalyst beds, Advances in Chemical Engineering 11, 275–448. [CrossRef]
  • Patel S.A., Daly J.G., Bukur D.B. (1990) Bubble-size distribution in Fischer-Tropsch derived waxes in bubble column, AIChE J. 36, 1, 93–105. [CrossRef]
  • Park S.-J., Bae J.W., Jung G.-I., Ha K.-S., Jun K.-W., Lee Y.-L. (2012) Crucial factors for catalyst aggregation and deactivation on Co/Al2O3 in a slurry-phase Fischer–Tropsch synthesis, Applied Catal. A: General 413-414, 310, 321.
  • Peña D., Griboval-Constant A., Lancelot C., Quijada M., Visez N., Stéphan O., Lecocq V., Diehl F., Khodakov A.Y. (2014) Molecular structure and localization of carbon species in alumina supported cobalt Fischer–Tropsch catalysts in a slurry reactor, Catal. Today 228, 65, 76.
  • Peña D., Griboval-Constant A., Diehl F., Lecocq V., Khodakov A.Y. (2013) Agglomeration at the Micrometer Length Scale of Cobalt Nanoparticles in Alumina-Supported Fischer–Tropsch Catalysts in a Slurry Reactor, ChemCatChem 5, 728, 731.
  • Perego C., Bortolo R., Zennaro R. (2009) Gas to liquids technologies for natural gas reserves valorization: The Eni experience, Catal. Today 142, 9, 16. [CrossRef]
  • Potgieter H., van der Westhuizen R., Rohwer E., Malan D. (2013) Hyphenation of supercritical fluid chromatography and two-dimensional gas chromatography mass spectrometry for group type separations, Journal of Chromatography A 1294, 0, 137–144. [CrossRef] [PubMed]
  • Rahmim I.I. (2009) Developing Premium Markets for GTL products, SMI GTL Conference, London, 27-28 Oct.
  • Reuel R.C., Bartholomew C.H. (1984) Effects of support and dispersion on the CO hydrogenation activity/selectivity properties of cobalt, J. Catal. 85, 78, 88.
  • Sarup B., Wojciechowski B.W. (1989) Studies of the Fischer-Tropsch synthesis on a Cobalt catalyst II. Kinetics of carbon monoxide conversion to methane and to higher hydrocarbons. Can. J. Chem. Eng. 67, 62–74. [CrossRef]
  • Schantz M.M., Martire D.E. (1987) Determination of hydrocarbon-water partition coefficients from chromatographic data and based on solution thermodynamics and theory, Journal of Chromatography 391, 35–51. [CrossRef]
  • Schultz H., Beck K., Erich E. (1988) Kinetics of Fischer-Tropsch selectivity, Fuel Process Technol. 18, 293–304. [CrossRef]
  • Schweitzer J.M., Viguié J.C. (2009) Oil & Gas Science and Technology – Rev. IFP 64, 1, 63–77. [CrossRef] [EDP Sciences]
  • Viguié J.-C. (2007) BTL: Advantages and Hurdles, World GTL 7 Summit, April 2007, London.
  • Visconti C.G., Lietti L., Forzatti P., Zennaro R. (2007) Fischer–Tropsch synthesis on sulphur poisoned Co/Al2O3 catalyst, Applied Catal. A: General 330, 49, 56. [CrossRef]
  • Visconti C.G., Tronconi E., Lietti L., Forzatti P., Rossini S., Zennaro R. (2011) Detailed kinetics of the Fischer-Tropsch synthesis on Cobalt catalysts based on H-assisted CO activation, Top Catal. 54, 786–800. [CrossRef]
  • van der Westhuizen R., Crous R., de Villiers A., Sandra P. (2010) Comprehensive two-dimensional gas chromatography for the analysis of FischerTropsch oil products, Journal of Chromatography A 1217, 52, 8334–8339. [CrossRef] [PubMed]
  • Wendt R., Steiff A., Weinspach P.-M. (1984) Liquid phase dispersion in bubble columns, Ger. Chem. Eng. 7, 267–273.
  • Wei D., Goodwin J.G., Oukaci R., Singleton A.H. (2001) Attrition resistance of cobalt F-T catalysts for slurry bubble column reactor use, Applied Catal. A: General 210, 137, 150.
  • Wolters M., van Grotel L.J.W., Eggenhuisen T.M., Sietsma J.R.A., de Jong K.P., de Jongh P.E. (2011) Combining confinement and NO calcination to arrive at highly dispersed supported nickel and cobalt oxide catalysts with a tunable particle size, Catal. Today 163, 27, 32. [CrossRef]
  • Zhang Q., Deng W., Wang Y. (2013) Recent advances in understanding the key catalyst factors for Fischer-Tropsch synthesis, J. Energy Chem. 22, 27, 38.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.