IFP Energies nouvelles International Conference: E-COSM'09 - IFAC Workshop on Engine and Powertrain Control, Simulation and Modeling
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 66, Numéro 4, July-August 2011
IFP Energies nouvelles International Conference: E-COSM'09 - IFAC Workshop on Engine and Powertrain Control, Simulation and Modeling
Page(s) 681 - 691
DOI https://doi.org/10.2516/ogst/2011132
Publié en ligne 20 septembre 2011
  • Johnson T. (2010) Review of Diesel Emissions and Control, SAE Technical Paper 2010-01-0301. [Google Scholar]
  • Chatterjee D., Burkhardt T., Bandl-Konrad B., Braun T., Tronconi E., Nova I., Ciardelli C. (2005) Numerical simulation of ammonia SCR catalytic converters: model development and application, SAE Technical Paper 2005-01-0965. [Google Scholar]
  • Chatterjee D., Burkhardt T., Weibel M., Tronconi E., Nova I., Ciardelli C. (2006) Numerical simulation of NO/NO2/NH3 reactions on SCR catalytic converters: Model development and applications, SAE Technical Paper 2006-01-0468. [Google Scholar]
  • Chatterjee D., Burkhardt T., Weibel M., Nova I., Grossale A., Tronconi E. (2007) Numerical simulation of zeolite and V-based SCR catalytic converters, SAE Technical Paper 2007-01-1136. [Google Scholar]
  • Ciardelli C., Nova I., Tronconi E., Chatterjee D., Bandl-Konrad B., Weibel M., Krutzsch B. (2007) Reactivity of NO/NO2-NH3 SCR system for diesel exhaust aftertreatment: Identification of the reaction network as a function of temperature and NO2 feed content, Appl. Catal. B: Env. 70, 1-4, 80-90. [CrossRef] [Google Scholar]
  • Colombo M., Nova I., Tronconi E. (2010) A comparative study of the NH3-SCR reactions over a Cu-zeolite and a Fe-zeolite catalyst, Catal. Today 151, 3-4, 223-230. [Google Scholar]
  • Grossale A., Nova I., Tronconi E. (2008) Study of a Fe-zeolite-based system as NH3-SCR catalyst for diesel exhaust aftertreatment, Catal. Today 136, 1-2, 18-27. [CrossRef] [Google Scholar]
  • Grossale A., Nova I., Tronconi E., Chatterjee D., Weibel M. (2008) The chemistry of the NO/NO2-NH3 “fast” SCR reaction over Fe-ZSM5 investigated by transient reaction analysis, J. Catal. 256, 2, 312-322. [CrossRef] [Google Scholar]
  • Nova I., Ciardelli C., Tronconi E., Chatterjee D., Bandl-Konrad B. (2006) NH3-NO/NO2 chemistry over V-based catalysts and its role in the mechanism of the Fast SCR reaction, Catal. Today 114, 1, 3-12. [CrossRef] [Google Scholar]
  • Nova I., Ciardelli C., Tronconi E., Chatterjee D., Bandl-Konrad B. (2006) NH3-SCR of NO over a V-based catalyst: Low-T redox kinetics with NH3 inhibition, AIChE J. 52, 9, 3222-3233. [CrossRef] [Google Scholar]
  • Nova I., Ciardelli C., Tronconi E., Chatterjee D., Weibel M. (2009) Unifying Redox Kinetics for Standard and Fast NH3-SCR over a V2O5-WO3/TiO2 Catalyst, AIChE J. 55, 6, 1514-1529. [CrossRef] [Google Scholar]
  • Tronconi E., Nova I., Ciardelli C., Chatterjee D., Weibel M. (2007) Redox features in the catalytic mechanism of the “standard” and “fast” NH3-SCR of NOx over a V-based catalyst investigated by dynamic methods, J. Catal. 245, 1, 1-10. [CrossRef] [Google Scholar]
  • Tronconi E., Nova I., Ciardelli C., Chatterjee D., Bandl-Konrad B., Burkhardt T. (2005) Modelling of an SCR catalytic converter for diesel exhaust after treatment: Dynamic effects at low temperature, Catal. Today 105, 3-4, 529-536. [Google Scholar]
  • Ciardelli C., Nova I., Tronconi E., Ascherfeld M., Fabinski W. (2007) Combined use of a mass-spectrometer and a UV analyzer in the dynamic study of NH3-SCR for diesel exhaust aftertreatment, Topics Catal. 42-43, 1-4, 161-164. [CrossRef] [Google Scholar]
  • Nova I., Colombo M., Tronconi E., Weibel M., Schmeisser V. (2011) The NH3 Inhibition Effect in the Standard SCR Reaction of NO over a Fe-zeolite Catalyst: an Experimental and Modeling Study, SAE Technical Paper 2011-01-1319. [Google Scholar]
  • Mears D.E. (1971) Tests for Transport Limitations in Experimental Catalytic Reactors, Ind. Eng. Chem. Process. Des. Dev. 10, 4, 541-547. [CrossRef] [Google Scholar]
  • Forzatti P., Lietti L., Tronconi E. (2003) Nitrogen Oxides Removal, in Encyclopedia of Catalysis, Wiley, New York, pp. 298-343. [Google Scholar]
  • Buzzi Ferraris G., Donati G. (1974) A powerful method for Hougen-Watson model parameter estimation with integral conversion data, Chem. Eng. Sci. 29, 6, 1504-1509. [CrossRef] [Google Scholar]
  • Beeckman J.W. (1991) Measurement of the effective diffusion coefficient of nitrogen monoxide through porous monolith-type ceramic catalysts, Ind. Eng. Chem. Res. 30, 2, 428-430. [NASA ADS] [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Koebel M., Elsener M., Madia G. (2001) Reaction pathways in the selective catalytic reduction process with NO and NO2 at low temperatures, Ind. Eng. Chem. Res. 40, 1, 52-59. [NASA ADS] [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Madia, G., Koebel M., Elsener M., Wokaun A. (2002) The effect of an oxidation precatalyst on the NOx reduction by ammonia SCR, Ind. Eng. Chem. Res. 41, 15, 3512-3517. [NASA ADS] [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Iwasaki M., Yamazaki K., Shinjoh H. (2009) Transient reaction analysis and steady-state kinetic study of selective catalytic reduction of NO and NO + NO2 by NH3 over Fe/ZSM-5, Appl. Catal. A: Gen. 366, 1, 84-92. [CrossRef] [Google Scholar]
  • Kapteijn F., Singoredjo L., Dekker N.J.J., Moulijn J.A. (1993) Kinetics of the selective catalytic reduction of nitrogen oxide (NO) with ammonia over manganese oxide (Mn2O3)-tungsten oxide (WO3)/.gamma.-alumina, Ind. Eng. Chem. Res. 32, 3, 445-452. [NASA ADS] [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Koebel M., Elsener M. (1998) Selective catalytic reduction of NO over commercial DeNOx-catalysts: experimental determination of kinetic and thermodynamic parameters, Chem. Eng. Sci. 53, 4, 657-669. [CrossRef] [Google Scholar]
  • Willey R.J., Lai H., Peri J.B. (1991) Investigation of iron oxidechromia-alumina aerogels for the selective catalytic reduction of nitric oxide by ammonia, J. Catal. 130, 2, 319-331. [CrossRef] [Google Scholar]
  • Nova I., Lietti L., Tronconi E., Forzatti P. (2000) Dynamics of SCR reaction over a TiO2-supported vanadia-tungsta commercial catalyst, Catal. Today 60, 1-2, 73-82. [CrossRef] [Google Scholar]
  • Malmberg S., Votsmeier M., Gieshoff J., Soger N., Mussmann L., Schuler A., Drochner A. (2007) Dynamic phenomena of SCR-catalysts containing Fe-exchanged zeolites - experiments and computer simulations, Topics Catal. 42-43, 1-4, 33-36. [CrossRef] [Google Scholar]
  • Sjovall H., Blint R.J., Gopinath A., Olsson L. (2010) A Kinetic Model for the Selective Catalytic Reduction of NOx with NH3 over an Fe-zeolite Catalyst, Ind. Eng. Chem. Res. 49, 1, 39-52. [NASA ADS] [CrossRef] [EDP Sciences] [PubMed] [Google Scholar]
  • Brandenberger S., Kroecher O., Tissler A., Althoff R. (2008) The State of the Art in Selective Catalytic Reduction of NOx by Ammonia Using Metal-Exchanged Zeolite Catalysts, Catal. Rev. Sci. Eng. 50, 4, 492-531. [CrossRef] [Google Scholar]
  • Katada N., Igi H., Kim J.H., Niwa M. (1997) Determination of the acidic properties of zeolite by theoretical analysis of temperature-programmed desorption of ammonia based on adsorption equilibrium, J. Phys. Chem. B 101, 31, 5969-5977. [CrossRef] [Google Scholar]
  • Parrillo D.J., Gorte R.J. (1993) Characterization of Acidity in H-Zsm-5, H-Zsm-12, H-Mordenite, and H-Y Using Microcalorimetry, J. Phys. Chem. 97, 34, 8786-8792. [CrossRef] [Google Scholar]
  • Sobalik Z., Jisa K., Jirglova H., Bemauer B. (2007) Simultaneous FTIR/UV-Vis study of reactions over metallo-zeolites Approach to quantitative in situ studies, Catal. Today 126, 1-2, 73-80. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.