IFP Energies nouvelles International Conference: Deep Saline Aquifers for Geological Storage of CO2 and Energy
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 66, Numéro 1, January-February 2011
IFP Energies nouvelles International Conference: Deep Saline Aquifers for Geological Storage of CO2 and Energy
Page(s) 119 - 135
DOI https://doi.org/10.2516/ogst/2011002
Publié en ligne 23 mars 2011
  • Aagaard P., Helgeson H.C. (1982) Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions I. Theoretical considerations, Am. J. Sci. 282, 237-285. [Google Scholar]
  • Aagaard P., Egeberg P.K., Saigal G.C., Morad S., Bjørlykke K. (1990) Diagenetic albitization of detrital K-feldspar in Jurassic, Lower Cretaceous, and Tertiary clastic reservoir rocks from offshore Norway, II. Formation water chemistry and kinetic considerations, J. Sediment. Petrol. 60, 575-581. [Google Scholar]
  • Aagaard P., Pham V.T.H., Hellevang H. (2009) A modeling study of the log-term mineral trapping in deep saline marine sand aquifers, American Geophysical Union, Fall Meeting, San Francisco, CA, USA. abstract #H12B-07. [Google Scholar]
  • Aja S.U., Rosenberg P.E., Kittrick J.A. (1991) Illite equilibria in solutions: I. Phase relationships in the system K2O-Al2O3-SiO2-H2O between 25 and 250°C, Geochim. Cosmochim. Ac. 55, 1353-1364. [CrossRef] [Google Scholar]
  • André L., Audigane P., Azaroual M., Menjoz A. (2007) Numerical modeling of fluid-rock chemical interactions at the supercritical CO2-liquid interface during CO2 injection into a carbonate reservoir, the Dogger aquifer (Paris Basin, France), Energ. Convers. Manage. 48, 6, 1782-1797. [Google Scholar]
  • Arvidson R.S., Mackenzie F.T. (1997) Tentative kinetic model for dolomite precipitation rate and its application to dolomite distribution, Aquat. Geochem. 2, 273-298. [CrossRef] [Google Scholar]
  • Arvidson R.S., Mackenzie F.T. (1999) The dolomite problem: control of precipitation kinetics by temperature and saturation state, Am. J. Sci. 299, 257-288. [CrossRef] [Google Scholar]
  • Baker J.C., Bai G.P., Hamilton P.J., Golding S.D., Keene J.B. (1995) Continental-scale magmatic carbon dioxide seepage recorded by dawsonite in the Bowen-Gunnedah-Sydney Basin system, Eastern Australia, J. Sediment. Res. A65, 3, 522-530. [Google Scholar]
  • Bauer A., Berger G. (1998) Kaolinite and smectite dissolution rate at high molar KOH solutions at 35 and 80°C, Appl. Geochem. 13, 7, 905-916. [CrossRef] [Google Scholar]
  • Bénézeth P., Palmer D.A., Anovitz L.M., Horita J. (2007) Dawsonite synthesis and reevaluation of its thermodynamic properties from solubility measurements: Implications for mineral trapping of CO2, Geochim. Cosmochim. Ac. 71, 18, 4438-4455. [Google Scholar]
  • Bjørlykke K., Nedkvitne T., Ramm M., Saigal G.C. (1992) Diagenetic processes in the Brent Group (Middle Jurassic) reservoirs of the North Sea: an overview, Geol. Soc. London Spec. Pub. 61, 263-287. [CrossRef] [Google Scholar]
  • Bjørlykke K., Egeberg P.K. (1993) Quartz cementation in sedimentary basins, Am. Association Petroleum Geologists Bull. 77, 9, 1538-1548. [Google Scholar]
  • Blum A.E.Stillings L.L. (1995) Feldspar dissolution kinetics, Rev. Mineral. Geochem. 31, 1, 291-351. [Google Scholar]
  • Brandt F., Bosbach D., Krawczyk-Bärsch E., Arnold T., Bernhard G. (2003) Chlorite dissolution in the acid ph-range: a combined microscopic and macroscopic approach, Geochim. Cosmochim. Ac. 67, 8, 1451-1461. [CrossRef] [Google Scholar]
  • Brantley S.L. (2008) Kinetics of mineral dissolution, in Kinetics of water-rock interaction, Brantley S.L., Kubicki J.D., White A.F. (eds), Springer Science + business Media, LLC, New York, pp. 151-196. [Google Scholar]
  • Brunauer S., Emmett P.H., Teller E. (1938) Adsorption of gases in multimolecular layers, J. Am. Chem. Soc. 60, 309-319. [Google Scholar]
  • Burton W.K., Cabrera N., Frank F.K. (1951) The growth of crystals and the equilibrium structure of their surfaces, Philos. T. Roy. Soc. London 243, 299-358. [Google Scholar]
  • Cantucci B., Montegrossi G., Vaselli O., Tassi F., Quattrocchi F., Perkins E.H. (2009) Geochemical modeling of CO2 storage in deep reservoirs: The Weyburn Project (Canada) case study, Chem. Geol. 265, 1-2. 181-197. [CrossRef] [Google Scholar]
  • Carroll-Webb S.A., Walther J.V. (1988) A surface complex reaction model for the pH-dependence of corundum and kaolinite dissolution rates, Geochim. Cosmochim. Ac. 52, 11, 2609-2623. [CrossRef] [Google Scholar]
  • Chadwick R.A., Zweigel P., Gregersen U., Kirby G.A., Holloway S., Johannessen P.N., (2004) Geological reservoir characterization of a CO2 storage site: The Utsira Sand, Sleipner, northern North Sea, Energy 29, 9-10, 1371-1381. [CrossRef] [Google Scholar]
  • Duan R., Carey J.W., Kaszuba J.P. (2005) Mineral chemistry and precipitation kinetics of dawsonite in the geological sequestration of CO2, American Geophysical Union, Fall Meeting 2005, abstract #GC13A-1210. [Google Scholar]
  • Ehrenberg S.N., Nadeau P.H. (1989) Formation of diagenetic illite in sandstones of the Garn Formation, Haltenbanken area, Mid-Norwegian Continental shelf, Clay Miner. 24, 233-253. [CrossRef] [Google Scholar]
  • Eslinger E., Pevear D. (1988) Clay minerals for petroleum geologists and engineers, Society of Economic Palaeontologists and Mineralogists; Short Course Notes, 22. [Google Scholar]
  • Ferrante M.J., Stuve J.M., Richardson D.W. (1976) Thermodynamic data for synthetic dawsonite. Report of investigations - U.S. Bureau of Mines, 8129, 13 p. [Google Scholar]
  • Gale J. (2004) Geological storage of CO2: What do we know, where are the gaps and what more needs to be done? Energy 29, 1329-1338. [CrossRef] [Google Scholar]
  • Ganor J., Huston T.J., Walter L.M. (2005) Quartz precipitation kinetics at 180°C in NaCl solutions - Implications for the usability of the principle of detailed balancing, Geochim. Cosmochim. Ac. 69, 8, 2043-2056. [CrossRef] [Google Scholar]
  • Gao Y., Liu L., Hu W. (2009) Petrology and isotopic geochemistry of dawsonite-bearing sandstones in Hailaer basin, northeastern China, Appl. Geochem. 24, 9, 1724-1738. [CrossRef] [Google Scholar]
  • Gaus I., Le Guern C., Pauwels H., Girard J.-P., Pearce J., Shepherd T., Hatziyannis G., Metaxas A. (2004) Comparison of long term geochemical interactions at two natural CO2-analogues: Montmiral (Southeast Basin, France) and Messokampos (Florina Basin, Greece) case studies, GHGT7-7th International Conference on Greenhouse Gas Control Technologies, Vancouver, Canada, 5-9 September 2004, 9 p. [Google Scholar]
  • Gaus I., Azaroual M., Czernichowski-Lauriol I. (2005) Reactive transport modelling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea), Chem. Geol. 217, 3-4, 319-337. [CrossRef] [Google Scholar]
  • Gherardi F., Xu T., Pruess K. (2007) Numerical modeling of selflimiting and self-enhancing caprock alteration induced by CO2 storage in a depleted gas reservoir, Chem. Geol. 244, 1-2, 103-129. [CrossRef] [Google Scholar]
  • Giammar D.E., Bruant Jr R.G., Peters C.A. (2005) Forsterite dissolution and magnesite precipitation at conditions relevant for deep saline aquifer storage and sequestration of carbon dioxide, Chem. Geol. 217, 257-276. [CrossRef] [Google Scholar]
  • Golab A.N., Carr P.F., Palamara D.R. (2006) Influence of localised igneous activity on cleat dawsonite formation in Late Permian coal measures, Upper Hunter Valley, Australia, Int. J. Coal Geol. 66, 296-304. [CrossRef] [Google Scholar]
  • Golab A.N., Hutton A.C., French D. (2007) Petrography, carbonate mineralogy and geochemistry of thermally altered coal in Permian coal measures, Hunter Valley, Australia, Int. J. Coal Geol. 70, 1-3, 150-165. [CrossRef] [Google Scholar]
  • Golubev S.V., Bauer A., Pokrovsky O.S. (2006) Effect of pH and organic ligands on the kinetics of smectite dissolution at 25°C, Geochim. Cosmochim. Ac. 70, 17, 4436-4451. [CrossRef] [Google Scholar]
  • Harrison W.J., Wendlandt R.F., Dendy Sloan E. (1995) Geochemical interactions resulting from carbon dioxide disposal on the seafloor, Appl. Geochem. 10, 4, 461-475. [CrossRef] [Google Scholar]
  • Hellevang H., Declercq J., Kvamme B., Aagaard P. (2010) The dissolution rates of dawsonite at pH 0.9 to 6.3 and temperatures of 22, 60 and 77°C, Appl. Geochem. 25, 1575-1586. [CrossRef] [Google Scholar]
  • Hellevang H., Aagaard P., Oelkers E.H., Kvamme B. (2005) Can dawsonite permanently trap CO2? Environ. Sci. Technol. 39, 21, 8281-8287. [CrossRef] [PubMed] [Google Scholar]
  • Holloway S. (1997) An overview of the underground disposal of carbon dioxide, Energ. Convers. Manage. 38, 193-198. [Google Scholar]
  • IPCC (2005) Chapter 5 Underground geological storage, in Carbon dioxide capture and storage, Metz B., Davidson O., de Coninck H., Loos M., Meyer L. (eds), Cambridge University Press, Cambridge, UK, pp. 431. [Google Scholar]
  • IPCC (2007) WG II: Impacts, adaption and vulnerability, Parry M.L., Canziani O.F., Palutikof J.P., van der Linden P.J., Hanson C.E. (eds), Cambridge University Press, Cambridge, UK, pp. 976. [Google Scholar]
  • Johnson J.W., Nitao J.J., Knauss K.G. (2004) Reactive transport modeling of CO2 storage in saline aquifers to elucidate fundamental processes, trapping mechanisms and sequestration partitioning, in Geological storage of carbon dioxide, Bains S.J., Worden R.H. (eds), Geological Society Special Publications, London, pp. 107-128. [Google Scholar]
  • Johnson J.W., Nitao J.J., Morris J.P. (2005) Reactive Transport Modeling of Cap-Rock Integrity During Natural and Engineered CO2 Storage, Carbon Dioxide Capture for Storage in Deep Geologic Formations, Elsevier Science, Amsterdam, pp. 787-813. [Google Scholar]
  • Johnson J.W., Oelkers E.H., Helgeson H.C. (1992) SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5 000 bar and 0 to 1 000°C, Comput. Geosci. 18, 7, 899-947. [CrossRef] [Google Scholar]
  • Ketzer J.M., Iglesias R., Einloft S., Dullius J., Ligabue R., de Lima V. (2009) Water-rock-CO2 interactions in saline aquifers aimed for carbon dioxide storage: Experimental and numerical modeling studies of the Rio Bonito Formation (Permian), southern Brazil, Appl. Geochem. 24, 5, 760-767. [CrossRef] [Google Scholar]
  • Knauss K.G., Johnson J.W., Steefel C.I. (2005) Evaluation of the impact of CO2, co-contaminant gas, aqueous fluid and reservoir rock interactions on the geologic sequestration of CO2, Chem. Geol. 217, 3-4, 339-350. [CrossRef] [Google Scholar]
  • Lasaga A.C. (1981) Transition state theory, in Kinetics of Geochemical Processes, Lasaga A.C., Kirkpatrick R.J. (eds), Mineralogical Society of America, pp. 135-169. [Google Scholar]
  • Lasaga A.C. (1984) Chemical kinetics of water-rock interactions, J. Geophys. Res. 89, 4009-4025. [Google Scholar]
  • Moore J., Adams M., Allis R., Lutz S., Rauzi S. (2005) Mineralogical and geochemical consequences of the long-term presence of CO2 in natural reservoirs: An example from the Springerville-St. Johns Field, Arizona, and New Mexico, U.S.A., Chem. Geol. 217, 3-4, 365-385. [CrossRef] [Google Scholar]
  • Nagy K.L., Lasaga A.C. (1992) Dissolution and precipitation kinetics of gibbsite at 80°C and pH 3: The dependence on solution saturation state, Geochim. Cosmochim. Ac. 56, 3093-3111. [Google Scholar]
  • Nielsen A.E. (1964) Kinetics of precipitation, Pergamon Press, Oxford. [Google Scholar]
  • Nordstrom D.K., Plummer L.N., Wigley T.M.L., Wolery T.J., Ball J.W., Jenne E.A., Bassett R.L., Crerar D.A., Florence T.M., Fritz B., Hoffman M., Holdren Jr G.R., Lafon G.M., Mattigod S.V., McDuff R.E., Morel F., Reddy M.M., Sposito G., Thrailkill J. (1979) A comparison of computerized chemical models for equilibrium calculations in aqueous systems, in Chemical modeling in aqueous systems, speciation, sorption, solubility, and kinetics, Jenna E.A. (ed.), American Chemical Society, pp. 857-892. [Google Scholar]
  • Oelkers E.H., Schott J., Gauthier J.-M., Herrero-Roncal T. (2008) An experimental study of the dissolution mechanism and rates of muscovite, Geochim. Cosmochim. Ac. 72, 20, 4948-4961. [CrossRef] [Google Scholar]
  • Pauwels H., Gaus I., le Nindre Y.M., Pearce J., Czernichowski-Lauriol I. (2007) Chemistry of fluids from a natural analogue for a geological CO2 storage site (Montmiral, France): Lessons for CO2water-rock interaction assessment and monitoring, Appl. Geochem. 22, 2817-2833. [Google Scholar]
  • Parkhurst D.L., Appelo C.A.J. (1999) User’s guide to PHREEQC (version 2) - a computer program for speciation, reaction-path, 1Dtransport, and inverse geochemical calculations, US Geological Survey, Water Resources Investigation Reports, pp. 312. [Google Scholar]
  • Pearce J.M., Holloway S., Wacker H., Nelis M.K., Rochelle C., Bateman K. (1996) Natural occurrences as analogues for the geological disposal of carbon dioxide, Energ. Convers. Manage. 37, 6-8, 1123-1128. [Google Scholar]
  • Pokrovsky O.S., Golubev S.V., Schott J., Castillo A. (2009) Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150°C and 1 to 55 atm pCO2: New constraints on CO2 sequestration in sedimentary basins, Chem. Geol. 265, 1-2, 20-32. [CrossRef] [Google Scholar]
  • Saigal G.C., Morad S., Bjørlykke K., Egeberg P.K., Aagaard P. (1988) Diagenetic albitization of detrital K-feldspar in Jurassic, Lower Cretaceous, and Tertiary clastic reservoir rocks from offshore Norway, I. Texture and origin, J. Sediment. Petrol. 58, 1003-1013. [Google Scholar]
  • Saldi G.D., Jordan G., Schott J., Oelkers E.H. (2009) Magnesite growth rates as a function of temperature and saturation state, Geochim. Cosmochim. Ac. 73, 19, 5646-5657. [CrossRef] [Google Scholar]
  • Shiraki R., Brantley S.L. (1995) Kinetics of near-equilibrium calcite precipitation at 100°C: An evaluation of elementary reaction-based and affinity-based rate laws, Geochim. Cosmochim. Ac. 59, 8, 1457-1471. [Google Scholar]
  • Smith J.W., Milton C. (1966) Dawsonite in the Green River Formation of Colorado, Econ. Geol. 61, 1029-1042. [Google Scholar]
  • Soave G. (1972) Equilibrium constants from a modified Redlich-Kwong equation of state, Chem. Eng. Sci. 27, 1197-1203. [CrossRef] [Google Scholar]
  • Tester J.W., Worley W.G., Robinson B.A., Grigsby C.O., Feerer J.L. (1994) Correlating quartz dissolution kinetics in pure water from 25 to 625°C, Geochim. Cosmochim. Ac. 58, 11, 2407-2420. [Google Scholar]
  • Walton A.G. (1963) Nucleation and the interfacial tension of sparingly soluble salts, Microchim. Acta 51, 3, 422-430. [CrossRef] [Google Scholar]
  • Walton A.G. (1967) The formation and properties of precipitates, Interscience Publishers, New York, pp. 232. [Google Scholar]
  • White S.P., Allis R.G., Moore J., Chidsey T., Morgan C., Gwynn W., Adams M. (2005) Simulation of reactive transport of injected CO2 on the Colorado Plateau, Utah, USA, Chem. Geol. 217, 3-4, 387-405. [CrossRef] [Google Scholar]
  • Wigand M., Carey J.W., Schütt H., Spangenberg E., Erzinger J. (2008) Geochemical effects of CO2 sequestration in sandstones under simulated in situ conditions of deep saline aquifers, Appl. Geochem. 23, 9, 2735-2745. [Google Scholar]
  • Worden R.H. (2006) Dawsonite cement in the Triassic Lam Formation, Shabwa Basin, Yemen: A natural analogue for a potential mineral product of subsurface CO2 storage for greenhouse gas reduction, Mar. Petrol. Geol. 23, 1, 61-77. [CrossRef] [Google Scholar]
  • Xu T., Apps J.A., Pruess K. (2004) Numerical simulation of CO2 disposal by mineral trapping in deep aquifers, Appl. Geochem. 19, 6, 917-936. [Google Scholar]
  • Xu T., Apps J.A., Pruess K., Yamamoto H. (2007) Numerical modeling of injection and mineral trapping of CO2 with H2S and SO2 in a sandstone formation, Chem. Geol. 242, 3-4, 319-346. [CrossRef] [Google Scholar]
  • Zerai B., Saylor B.Z., Matisoff G. (2006) Computer simulation of CO2 trapped through mineral precipitation in the Rose Run Sandstone, Ohio, Appl. Geochem. 21, 2, 223-240. [CrossRef] [Google Scholar]
  • Zhang X., Wen Z., Gu Z., Xu X., lin Z. (2004) Hydrothermal synthesis and thermodynamic analysis of dawsonite-type compounds, J. Solid State Chem. 177, 3, 849-855. [CrossRef] [Google Scholar]
  • Zhang W., li Y., Xu T., Cheng H., Zheng Y., Xiong P. (2009) Longterm variations of CO2 trapped in different mechanisms in deep saline formations: A case study of the Songliao Basin, China, Int. J. Greenhouse Gas Control 3, 2, 161-180. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.