IFP Energies nouvelles International Conference: Deep Saline Aquifers for Geological Storage of CO2 and Energy
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 66, Numéro 1, January-February 2011
IFP Energies nouvelles International Conference: Deep Saline Aquifers for Geological Storage of CO2 and Energy
Page(s) 137 - 150
DOI https://doi.org/10.2516/ogst/2011005
Publié en ligne 14 mars 2011
  • Bachu S. (2000) Sequestration of CO2 in geological media: Criteria and approach for site selection in response to climate change, Energ. Convers. Manage. 41, 953-970. [CrossRef] [Google Scholar]
  • Bertier P., Swennen R., Leanen B., Lagrou D., Dreesen R. (2006) Experimental identification of CO2-water-rock interactions caused by sequestration of CO2 in Westphalian and Buntsandstein sandstones of the Campine Basin (NE-Belgium), J. Geochem. Explor. 89, 1-3, 10-14. [CrossRef] [Google Scholar]
  • Bertier P., Swennen R., Leanen B. (2009a) Clay minerals interactions induced by sequestration of CO2 in fluvial sandstones: an evaluation by means of autoclave experiments and numerical modeling, Micro et Nano Scientiae Mare Magnum, XIV International Clay Conference, Castellaneta Marina, Italy, June 14-20. [Google Scholar]
  • Bertier P., Ferket H., Swennen R., Laenen B., Dreesen R., Van Tongeren P. (2009b) CO2-water-rock interactions induced by CO2- flooding of fluvial sandstones: an integrated study based on detailed reservoir characterization, experimental work and numerical modeling, Les Rencontres Scientifiques de I’IFP, International Conference on Deep Saline Aquifers for Geological Storage of CO2 and Energy, Rueil-Malmaison, France, May 27-29. [Google Scholar]
  • Credoz A., Bildstein O., Jullien M., Raynal J., Pétronin J.C., Lillo M., Pozo C., Geniaut G. (2009) Experimental and modeling study of geochemical reactivity between clayey caprocks and CO2 in geological storage conditions, Energy Procedia 1, 1, 3445-3452. [CrossRef] [Google Scholar]
  • Gaus I. (2010) Role and impact of CO2-rock interaction during CO2 storage in sedimentary rocks, Int. J. Greenhouse Gas Control 4, 73-89. [Google Scholar]
  • Gaus I., Azaroual M., Czernichowski-Lauriol I. (2005) Reactive transport modeling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea), Chem. Geol. 217, 319-337. [CrossRef] [Google Scholar]
  • Gunter W.D., Perkins E.H., Mccann T.J. (1993) Aquifer disposal of CO, -rich gases: reaction design for added capacity, Energ. Convers. Manage. 34, 941-948. [Google Scholar]
  • Johnson J.W., Nitao J.J., Morris J.P. (2004), Reactive transport modeling of cap rock integrity during natural and engineered CO2 storage, in The CO2 Capture Project (CCP) for Carbon Dioxide Storage in Deep Geologic Formations for Climate Change Mitigation: Volume 2 – Geologic Storage of Carbon Dioxide with Monitoring and Verification, Benson S.M. (ed.). [Google Scholar]
  • Kaszuba J.P., Janecky D.R., Snow M.G. (2005) Experimental evaluation of mixed fluid reactions between supercritical carbon dioxide and NaCl brine: relevance to the integrity of a geologic carbon repository, Chem. Geol. 217, 277-293. [CrossRef] [Google Scholar]
  • Li Z., Dong M., Li S., Huang S. (2006) CO2 sequestration in depleted oil and gas reservoir-caprock characterization and storage capacity, Energ. Convers. Manage. 47, 1372-1382. [CrossRef] [Google Scholar]
  • Luquot L., Andreani M., Gouze P. (2009) CO2 perlocation experiment through chlorite/zeolite-rich sandstone, Micro et Nano Scientiae Mare Magnum, XIV International Clay Conference, Castellaneta Marina, Italy, June 14-20. [Google Scholar]
  • Muller N., Qib R., Mackiea E., Pruess K., Blunt M.J. (2009) CO2 injection impairment due to halite precipitation, Energy Procedia 1, 1, 3507-3514. [CrossRef] [Google Scholar]
  • Nightingale M., Johnson G., Shevalier M., Hutcheon I., Perkins E., Mayer B. (2009) Impact of Injected CO2 on Reservoir Mineralogy During CO2-EOR, Energy Procedia 1, 1, 3399-3406. [CrossRef] [Google Scholar]
  • Olsen D., Stentoft N. (2003) Chemical and Physical Interaction of CO2 and Carbonate Rock, Geological Survey of Denmark and Greenland Ministry of Environment, Report 41, Archive of BRGM. [Google Scholar]
  • Plewa M., Plewa S. (1992) Petrofizyka, Wydawnictwa Geologiczne, Warszawa, 1992. [Google Scholar]
  • Rimmelé G., Barlet-Gouédard V., Renard F. (2009) Evolution of the Petrophysical and Mineralogical Properites of Two Reservoir Rocks Under Thermodynamic Conditions Relevant for CO2 Geological Storage at 3 km Depth, Oil Gas Sci. Technol. – Rev. IFP 65, 4, 565-580. [CrossRef] [EDP Sciences] [Google Scholar]
  • Spycher N., Pruess K., Ennis-King J. (2003) CO2 - H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100°C and up to 600 bar, Geochim. Cosmochim. Acta 67, 16, 3015-3031. [Google Scholar]
  • Tarkowski R. (2008) CO2 storage capacity of geological structures located within Polish Lowlands’ Mesozoic formations, Gospodarka Surowcami Mineralnymi 24, 4/1, 101-112. [Google Scholar]
  • Tarkowski R., Manecki M. (eds) (2009) Badania oddziaływania CO2 na mezozoiczne skały zbiornikowe w celu określenia ich przydatności do geologicznej sekwestracji dwutlenku węgla, IGSMiE PAN, Kraków, 2009. [Google Scholar]
  • Tarkowski R., Uliasz-Misiak B. (2005) Struktury geologiczne (poziomy wodonośne i złoża węglowodorów) dla podziemnego składowania CO2 w Polsce, in Podziemne składowanie CO2 w Polsce w głębokich strukturach geologicznych (ropo-, gazo- i wodonośnych), Tarkowski R. (ed.), Wydawnictwo IGSMiE PAN, Kraków, pp. 69-111. [Google Scholar]
  • Tarkowski R., Uliasz-Misiak B. (2006) Possibilities of CO2 Sequestration by Storage in Geological Media of Major Deep Aquifers in Poland Chemical Engineering Research and Design, Carbon Capture Storage 84, A9, 776-780. [Google Scholar]
  • Tarkowski R., Uliasz-Misiak B., Wójcicki A. (2009) CO2 storage capacity of deep aquifers and hydrocarbon fields in Poland – EU GeoCapacity Project results, Energy Procedia 1, 1, 2671-2677. [CrossRef] [Google Scholar]
  • Voormeij D.A., Simandl G.J. (2004) Geological, ocean and mineral CO2 sequestration options: A technical review, Geosci. Can. 31, 11-22. [Google Scholar]
  • Wigand M., Carey J.W., Schuett H., Spangenberg E., Erzinger J. (2008) Geochemical effects of CO2 sequestration in sandstones under simulated in situ conditions of deep saline aquifers, Appl. Geochem. 23, 9, 2735-2745. [Google Scholar]
  • Wollenweber J., Alles S., Kronimus A., Busch Helge Stanjekd A., Krooss B.M. (2009) Caprock and overburden processes in geological CO2 storage: An experimental study on sealing efficiency and mineral alterations, Energy Procedia 1, 1, 3469-3476. [CrossRef] [Google Scholar]
  • Xiao Y., Xu T., Pruess K. (2009) The effects of gas-fluid-rock interactions on CO2 injection and storage: insights from reactive transport modeling, Energy Procedia 1, 1, 1783-1790. [CrossRef] [Google Scholar]
  • Zeidouni M., Poolandi-Darvish M., Keith D. (2009) Analytical Solution to Evaluate Salt Precipitation during CO2 Injection in Saline Aquifers, Energy Procedia 1, 1, 1775-1782. [CrossRef] [Google Scholar]
  • Zemke K., Kummerow J., Wandrey M. (2009) CO2SINK Group - Petrophysical laboratory investigations of carbon dioxide storage in a subsurface saline aquifer in Ketzin/Germany within the scope of CO2SINK, Geophysical Research Abstracts 11, EGU 2009-13728-1, 2009 EGU General Assembly 2009. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.