IFP Energies nouvelles International Conference: Deep Saline Aquifers for Geological Storage of CO2 and Energy
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 66, Number 1, January-February 2011
IFP Energies nouvelles International Conference: Deep Saline Aquifers for Geological Storage of CO2 and Energy
Page(s) 119 - 135
DOI https://doi.org/10.2516/ogst/2011002
Published online 23 March 2011
  • Aagaard P., Helgeson H.C. (1982) Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions I. Theoretical considerations, Am. J. Sci. 282, 237-285. [CrossRef]
  • Aagaard P., Egeberg P.K., Saigal G.C., Morad S., Bjørlykke K. (1990) Diagenetic albitization of detrital K-feldspar in Jurassic, Lower Cretaceous, and Tertiary clastic reservoir rocks from offshore Norway, II. Formation water chemistry and kinetic considerations, J. Sediment. Petrol. 60, 575-581.
  • Aagaard P., Pham V.T.H., Hellevang H. (2009) A modeling study of the log-term mineral trapping in deep saline marine sand aquifers, American Geophysical Union, Fall Meeting, San Francisco, CA, USA. abstract #H12B-07.
  • Aja S.U., Rosenberg P.E., Kittrick J.A. (1991) Illite equilibria in solutions: I. Phase relationships in the system K2O-Al2O3-SiO2-H2O between 25 and 250°C, Geochim. Cosmochim. Ac. 55, 1353-1364. [CrossRef]
  • André L., Audigane P., Azaroual M., Menjoz A. (2007) Numerical modeling of fluid-rock chemical interactions at the supercritical CO2-liquid interface during CO2 injection into a carbonate reservoir, the Dogger aquifer (Paris Basin, France), Energ. Convers. Manage. 48, 6, 1782-1797. [CrossRef]
  • Arvidson R.S., Mackenzie F.T. (1997) Tentative kinetic model for dolomite precipitation rate and its application to dolomite distribution, Aquat. Geochem. 2, 273-298. [CrossRef]
  • Arvidson R.S., Mackenzie F.T. (1999) The dolomite problem: control of precipitation kinetics by temperature and saturation state, Am. J. Sci. 299, 257-288. [CrossRef]
  • Baker J.C., Bai G.P., Hamilton P.J., Golding S.D., Keene J.B. (1995) Continental-scale magmatic carbon dioxide seepage recorded by dawsonite in the Bowen-Gunnedah-Sydney Basin system, Eastern Australia, J. Sediment. Res. A65, 3, 522-530.
  • Bauer A., Berger G. (1998) Kaolinite and smectite dissolution rate at high molar KOH solutions at 35 and 80°C, Appl. Geochem. 13, 7, 905-916. [CrossRef]
  • Bénézeth P., Palmer D.A., Anovitz L.M., Horita J. (2007) Dawsonite synthesis and reevaluation of its thermodynamic properties from solubility measurements: Implications for mineral trapping of CO2, Geochim. Cosmochim. Ac. 71, 18, 4438-4455. [CrossRef]
  • Bjørlykke K., Nedkvitne T., Ramm M., Saigal G.C. (1992) Diagenetic processes in the Brent Group (Middle Jurassic) reservoirs of the North Sea: an overview, Geol. Soc. London Spec. Pub. 61, 263-287. [CrossRef]
  • Bjørlykke K., Egeberg P.K. (1993) Quartz cementation in sedimentary basins, Am. Association Petroleum Geologists Bull. 77, 9, 1538-1548.
  • Blum A.E.Stillings L.L. (1995) Feldspar dissolution kinetics, Rev. Mineral. Geochem. 31, 1, 291-351.
  • Brandt F., Bosbach D., Krawczyk-Bärsch E., Arnold T., Bernhard G. (2003) Chlorite dissolution in the acid ph-range: a combined microscopic and macroscopic approach, Geochim. Cosmochim. Ac. 67, 8, 1451-1461. [CrossRef]
  • Brantley S.L. (2008) Kinetics of mineral dissolution, in Kinetics of water-rock interaction, Brantley S.L., Kubicki J.D., White A.F. (eds), Springer Science + business Media, LLC, New York, pp. 151-196.
  • Brunauer S., Emmett P.H., Teller E. (1938) Adsorption of gases in multimolecular layers, J. Am. Chem. Soc. 60, 309-319. [CrossRef]
  • Burton W.K., Cabrera N., Frank F.K. (1951) The growth of crystals and the equilibrium structure of their surfaces, Philos. T. Roy. Soc. London 243, 299-358. [CrossRef]
  • Cantucci B., Montegrossi G., Vaselli O., Tassi F., Quattrocchi F., Perkins E.H. (2009) Geochemical modeling of CO2 storage in deep reservoirs: The Weyburn Project (Canada) case study, Chem. Geol. 265, 1-2. 181-197. [CrossRef]
  • Carroll-Webb S.A., Walther J.V. (1988) A surface complex reaction model for the pH-dependence of corundum and kaolinite dissolution rates, Geochim. Cosmochim. Ac. 52, 11, 2609-2623. [CrossRef]
  • Chadwick R.A., Zweigel P., Gregersen U., Kirby G.A., Holloway S., Johannessen P.N., (2004) Geological reservoir characterization of a CO2 storage site: The Utsira Sand, Sleipner, northern North Sea, Energy 29, 9-10, 1371-1381. [CrossRef]
  • Duan R., Carey J.W., Kaszuba J.P. (2005) Mineral chemistry and precipitation kinetics of dawsonite in the geological sequestration of CO2, American Geophysical Union, Fall Meeting 2005, abstract #GC13A-1210.
  • Ehrenberg S.N., Nadeau P.H. (1989) Formation of diagenetic illite in sandstones of the Garn Formation, Haltenbanken area, Mid-Norwegian Continental shelf, Clay Miner. 24, 233-253. [CrossRef]
  • Eslinger E., Pevear D. (1988) Clay minerals for petroleum geologists and engineers, Society of Economic Palaeontologists and Mineralogists; Short Course Notes, 22.
  • Ferrante M.J., Stuve J.M., Richardson D.W. (1976) Thermodynamic data for synthetic dawsonite. Report of investigations - U.S. Bureau of Mines, 8129, 13 p.
  • Gale J. (2004) Geological storage of CO2: What do we know, where are the gaps and what more needs to be done? Energy 29, 1329-1338. [CrossRef]
  • Ganor J., Huston T.J., Walter L.M. (2005) Quartz precipitation kinetics at 180°C in NaCl solutions - Implications for the usability of the principle of detailed balancing, Geochim. Cosmochim. Ac. 69, 8, 2043-2056. [CrossRef]
  • Gao Y., Liu L., Hu W. (2009) Petrology and isotopic geochemistry of dawsonite-bearing sandstones in Hailaer basin, northeastern China, Appl. Geochem. 24, 9, 1724-1738. [CrossRef]
  • Gaus I., Le Guern C., Pauwels H., Girard J.-P., Pearce J., Shepherd T., Hatziyannis G., Metaxas A. (2004) Comparison of long term geochemical interactions at two natural CO2-analogues: Montmiral (Southeast Basin, France) and Messokampos (Florina Basin, Greece) case studies, GHGT7-7th International Conference on Greenhouse Gas Control Technologies, Vancouver, Canada, 5-9 September 2004, 9 p.
  • Gaus I., Azaroual M., Czernichowski-Lauriol I. (2005) Reactive transport modelling of the impact of CO2 injection on the clayey cap rock at Sleipner (North Sea), Chem. Geol. 217, 3-4, 319-337. [CrossRef]
  • Gherardi F., Xu T., Pruess K. (2007) Numerical modeling of selflimiting and self-enhancing caprock alteration induced by CO2 storage in a depleted gas reservoir, Chem. Geol. 244, 1-2, 103-129. [CrossRef]
  • Giammar D.E., Bruant Jr R.G., Peters C.A. (2005) Forsterite dissolution and magnesite precipitation at conditions relevant for deep saline aquifer storage and sequestration of carbon dioxide, Chem. Geol. 217, 257-276. [CrossRef]
  • Golab A.N., Carr P.F., Palamara D.R. (2006) Influence of localised igneous activity on cleat dawsonite formation in Late Permian coal measures, Upper Hunter Valley, Australia, Int. J. Coal Geol. 66, 296-304. [CrossRef]
  • Golab A.N., Hutton A.C., French D. (2007) Petrography, carbonate mineralogy and geochemistry of thermally altered coal in Permian coal measures, Hunter Valley, Australia, Int. J. Coal Geol. 70, 1-3, 150-165. [CrossRef]
  • Golubev S.V., Bauer A., Pokrovsky O.S. (2006) Effect of pH and organic ligands on the kinetics of smectite dissolution at 25°C, Geochim. Cosmochim. Ac. 70, 17, 4436-4451. [CrossRef]
  • Harrison W.J., Wendlandt R.F., Dendy Sloan E. (1995) Geochemical interactions resulting from carbon dioxide disposal on the seafloor, Appl. Geochem. 10, 4, 461-475. [CrossRef]
  • Hellevang H., Declercq J., Kvamme B., Aagaard P. (2010) The dissolution rates of dawsonite at pH 0.9 to 6.3 and temperatures of 22, 60 and 77°C, Appl. Geochem. 25, 1575-1586. [CrossRef]
  • Hellevang H., Aagaard P., Oelkers E.H., Kvamme B. (2005) Can dawsonite permanently trap CO2? Environ. Sci. Technol. 39, 21, 8281-8287. [CrossRef] [PubMed]
  • Holloway S. (1997) An overview of the underground disposal of carbon dioxide, Energ. Convers. Manage. 38, 193-198. [CrossRef]
  • IPCC (2005) Chapter 5 Underground geological storage, in Carbon dioxide capture and storage, Metz B., Davidson O., de Coninck H., Loos M., Meyer L. (eds), Cambridge University Press, Cambridge, UK, pp. 431.
  • IPCC (2007) WG II: Impacts, adaption and vulnerability, Parry M.L., Canziani O.F., Palutikof J.P., van der Linden P.J., Hanson C.E. (eds), Cambridge University Press, Cambridge, UK, pp. 976.
  • Johnson J.W., Nitao J.J., Knauss K.G. (2004) Reactive transport modeling of CO2 storage in saline aquifers to elucidate fundamental processes, trapping mechanisms and sequestration partitioning, in Geological storage of carbon dioxide, Bains S.J., Worden R.H. (eds), Geological Society Special Publications, London, pp. 107-128.
  • Johnson J.W., Nitao J.J., Morris J.P. (2005) Reactive Transport Modeling of Cap-Rock Integrity During Natural and Engineered CO2 Storage, Carbon Dioxide Capture for Storage in Deep Geologic Formations, Elsevier Science, Amsterdam, pp. 787-813.
  • Johnson J.W., Oelkers E.H., Helgeson H.C. (1992) SUPCRT92: A software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 to 5 000 bar and 0 to 1 000°C, Comput. Geosci. 18, 7, 899-947. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  • Ketzer J.M., Iglesias R., Einloft S., Dullius J., Ligabue R., de Lima V. (2009) Water-rock-CO2 interactions in saline aquifers aimed for carbon dioxide storage: Experimental and numerical modeling studies of the Rio Bonito Formation (Permian), southern Brazil, Appl. Geochem. 24, 5, 760-767. [CrossRef]
  • Knauss K.G., Johnson J.W., Steefel C.I. (2005) Evaluation of the impact of CO2, co-contaminant gas, aqueous fluid and reservoir rock interactions on the geologic sequestration of CO2, Chem. Geol. 217, 3-4, 339-350. [CrossRef]
  • Lasaga A.C. (1981) Transition state theory, in Kinetics of Geochemical Processes, Lasaga A.C., Kirkpatrick R.J. (eds), Mineralogical Society of America, pp. 135-169.
  • Lasaga A.C. (1984) Chemical kinetics of water-rock interactions, J. Geophys. Res. 89, 4009-4025. [CrossRef]
  • Moore J., Adams M., Allis R., Lutz S., Rauzi S. (2005) Mineralogical and geochemical consequences of the long-term presence of CO2 in natural reservoirs: An example from the Springerville-St. Johns Field, Arizona, and New Mexico, U.S.A., Chem. Geol. 217, 3-4, 365-385. [CrossRef]
  • Nagy K.L., Lasaga A.C. (1992) Dissolution and precipitation kinetics of gibbsite at 80°C and pH 3: The dependence on solution saturation state, Geochim. Cosmochim. Ac. 56, 3093-3111. [CrossRef]
  • Nielsen A.E. (1964) Kinetics of precipitation, Pergamon Press, Oxford.
  • Nordstrom D.K., Plummer L.N., Wigley T.M.L., Wolery T.J., Ball J.W., Jenne E.A., Bassett R.L., Crerar D.A., Florence T.M., Fritz B., Hoffman M., Holdren Jr G.R., Lafon G.M., Mattigod S.V., McDuff R.E., Morel F., Reddy M.M., Sposito G., Thrailkill J. (1979) A comparison of computerized chemical models for equilibrium calculations in aqueous systems, in Chemical modeling in aqueous systems, speciation, sorption, solubility, and kinetics, Jenna E.A. (ed.), American Chemical Society, pp. 857-892.
  • Oelkers E.H., Schott J., Gauthier J.-M., Herrero-Roncal T. (2008) An experimental study of the dissolution mechanism and rates of muscovite, Geochim. Cosmochim. Ac. 72, 20, 4948-4961. [CrossRef]
  • Pauwels H., Gaus I., le Nindre Y.M., Pearce J., Czernichowski-Lauriol I. (2007) Chemistry of fluids from a natural analogue for a geological CO2 storage site (Montmiral, France): Lessons for CO2water-rock interaction assessment and monitoring, Appl. Geochem. 22, 2817-2833. [CrossRef]
  • Parkhurst D.L., Appelo C.A.J. (1999) User’s guide to PHREEQC (version 2) - a computer program for speciation, reaction-path, 1Dtransport, and inverse geochemical calculations, US Geological Survey, Water Resources Investigation Reports, pp. 312.
  • Pearce J.M., Holloway S., Wacker H., Nelis M.K., Rochelle C., Bateman K. (1996) Natural occurrences as analogues for the geological disposal of carbon dioxide, Energ. Convers. Manage. 37, 6-8, 1123-1128. [CrossRef]
  • Pokrovsky O.S., Golubev S.V., Schott J., Castillo A. (2009) Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150°C and 1 to 55 atm pCO2: New constraints on CO2 sequestration in sedimentary basins, Chem. Geol. 265, 1-2, 20-32. [CrossRef]
  • Saigal G.C., Morad S., Bjørlykke K., Egeberg P.K., Aagaard P. (1988) Diagenetic albitization of detrital K-feldspar in Jurassic, Lower Cretaceous, and Tertiary clastic reservoir rocks from offshore Norway, I. Texture and origin, J. Sediment. Petrol. 58, 1003-1013.
  • Saldi G.D., Jordan G., Schott J., Oelkers E.H. (2009) Magnesite growth rates as a function of temperature and saturation state, Geochim. Cosmochim. Ac. 73, 19, 5646-5657. [CrossRef]
  • Shiraki R., Brantley S.L. (1995) Kinetics of near-equilibrium calcite precipitation at 100°C: An evaluation of elementary reaction-based and affinity-based rate laws, Geochim. Cosmochim. Ac. 59, 8, 1457-1471. [CrossRef]
  • Smith J.W., Milton C. (1966) Dawsonite in the Green River Formation of Colorado, Econ. Geol. 61, 1029-1042. [CrossRef]
  • Soave G. (1972) Equilibrium constants from a modified Redlich-Kwong equation of state, Chem. Eng. Sci. 27, 1197-1203. [CrossRef]
  • Tester J.W., Worley W.G., Robinson B.A., Grigsby C.O., Feerer J.L. (1994) Correlating quartz dissolution kinetics in pure water from 25 to 625°C, Geochim. Cosmochim. Ac. 58, 11, 2407-2420. [CrossRef]
  • Walton A.G. (1963) Nucleation and the interfacial tension of sparingly soluble salts, Microchim. Acta 51, 3, 422-430. [CrossRef]
  • Walton A.G. (1967) The formation and properties of precipitates, Interscience Publishers, New York, pp. 232.
  • White S.P., Allis R.G., Moore J., Chidsey T., Morgan C., Gwynn W., Adams M. (2005) Simulation of reactive transport of injected CO2 on the Colorado Plateau, Utah, USA, Chem. Geol. 217, 3-4, 387-405. [CrossRef]
  • Wigand M., Carey J.W., Schütt H., Spangenberg E., Erzinger J. (2008) Geochemical effects of CO2 sequestration in sandstones under simulated in situ conditions of deep saline aquifers, Appl. Geochem. 23, 9, 2735-2745. [CrossRef]
  • Worden R.H. (2006) Dawsonite cement in the Triassic Lam Formation, Shabwa Basin, Yemen: A natural analogue for a potential mineral product of subsurface CO2 storage for greenhouse gas reduction, Mar. Petrol. Geol. 23, 1, 61-77. [CrossRef]
  • Xu T., Apps J.A., Pruess K. (2004) Numerical simulation of CO2 disposal by mineral trapping in deep aquifers, Appl. Geochem. 19, 6, 917-936. [CrossRef]
  • Xu T., Apps J.A., Pruess K., Yamamoto H. (2007) Numerical modeling of injection and mineral trapping of CO2 with H2S and SO2 in a sandstone formation, Chem. Geol. 242, 3-4, 319-346. [CrossRef]
  • Zerai B., Saylor B.Z., Matisoff G. (2006) Computer simulation of CO2 trapped through mineral precipitation in the Rose Run Sandstone, Ohio, Appl. Geochem. 21, 2, 223-240. [CrossRef]
  • Zhang X., Wen Z., Gu Z., Xu X., lin Z. (2004) Hydrothermal synthesis and thermodynamic analysis of dawsonite-type compounds, J. Solid State Chem. 177, 3, 849-855. [CrossRef]
  • Zhang W., li Y., Xu T., Cheng H., Zheng Y., Xiong P. (2009) Longterm variations of CO2 trapped in different mechanisms in deep saline formations: A case study of the Songliao Basin, China, Int. J. Greenhouse Gas Control 3, 2, 161-180. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.