Dossier: Catalysts and Adsorbents: from Molecular Insight to Industrial Optimization
Open Access
Numéro
Oil & Gas Science and Technology - Rev. IFP
Volume 64, Numéro 6, November-December 2009
Dossier: Catalysts and Adsorbents: from Molecular Insight to Industrial Optimization
Page(s) 719 - 730
DOI https://doi.org/10.2516/ogst/2009037
Publié en ligne 25 septembre 2009
  • Breysse M.,Bennet B.A.,Chadwick D.,Vrinat M. (1981) B. Soc. Chim. Belg. 90, 1271. [CrossRef] [Google Scholar]
  • Alstrup I.,Chorkendorff I.,Candia R.,Clausen B.S.,Topsoe H. (1982) A combined X-Ray photoelectron and Mössbauer emission spectroscopy study of the state of cobalt in sulfided, supported, and unsupported Co-Mo catalysts, J. Catal. 77, 397. [CrossRef] [Google Scholar]
  • Gandubert A.D.,Legens C.,Guillaume D.,Rebours S.,Payen E. (2006) X-ray photoelectron spectroscopy surface quantification of sulfided CoMoP catalysts. Relation between activity and promoted sites, Surf. Interface Anal. 28, 206. [CrossRef] [Google Scholar]
  • Coulier L., de Beer V.H.J., van Veen J.A.R.,Niemantsverdriet J.W. (2000) On the formation of cobaltmolybdenum sulfides in silica-supported hydrotreating model catalysts, Top. Catal. 13, 99. [CrossRef] [Google Scholar]
  • Garreau F.B.,Toulhoat H.,Kasztelan S.,Paulus R. (1986) Low temperature synthesis of mixed NiMo sulfides: structural, textural and catalytic properties, Polyhedron 5, 211. [CrossRef] [Google Scholar]
  • Houssenbay S.,Kasztelan S.,Toulhoat H.,Bonnelle J.P.,Grimblot J. (1989) Nature of the different nickel species in sulfided bulk and alumina-supported nickel-molybdenum hydrotreating catalysts, J. Phys. Chem. 93, 7176. [CrossRef] [Google Scholar]
  • Coulier L., de Beer V.H.J., van Veen J.A.R.,Niemantsverdriet J.W. (2001) Correlation between Hydrodesulfurization Activity and Order of Ni and Mo Sulfidation in Planar Silica-Supported NiMo Catalysts: The Influence of Chelating Agents, J. Catal. 197, 26. [CrossRef] [Google Scholar]
  • Gandubert A.D.,Legens C.,Guillaume D.,Rebours S.,Payen E. (2007) X-ray photoelectron spectroscopy surface quantification of sulfided CoMoP catalysts - Relation between activity and promoted sites, Oil Gas Sci. Technol. – Rev. IFP 62, 79. [CrossRef] [EDP Sciences] [Google Scholar]
  • Gandubert A.D.,Krebs E.,Legens C.,Costa D.,Guillaume D.,Raybaud P. (2008) Optimal promoter edge decoration of CoMoS catalysts: A combined theoretical and experimental study, Catal. Today 130, 149. [CrossRef] [Google Scholar]
  • Raybaud P. (2007) Understanding and predicting improved sulfide catalysts: Insights from first principles modeling, Appl. Catal. A: Gen. 322, 76. [CrossRef] [Google Scholar]
  • Paul J.-F.,Cristol S.,Payen E. (2008) Computational studies of (mixed) sulfide hydrotreating catalysts, Catal. Today 130, 139. [CrossRef] [Google Scholar]
  • Kasztelan S.,Toulhoat H.,Grimblot J.,Bonnelle J.P. (1984) A geometrical model of hydrotreating catalysts. Prediction of catalytic activity variations with composition, Appl. Catal. A: Gen. 13, 127. [CrossRef] [Google Scholar]
  • Schweiger H.,Raybaud P.,Kresse G.,Toulhoat H. (2002) Shape and Edge Sites Modifications of MoS2 Catalytic Nanoparticles Induced by Working Conditions: A Theoretical Study, J. Catal. 207, 76. [CrossRef] [Google Scholar]
  • Schweiger H.,Raybaud P.,Toulhoat H. (2002) Promoter sensitive shapes of Co(Ni)MoS nanocatalysts in sulfo-reductive conditions, J. Catal. 212, 33. [CrossRef] [Google Scholar]
  • Byskov L.S.,Hammer B.,Nørskov J.K.,Clausen B.S.,Topsøe H. (1997) Sulfur bonding in MoS2 and Co-Mo-S structures, Catal. Lett. 47, 177. [CrossRef] [Google Scholar]
  • Lauritsen J.V.,Nyberg M.,Nørskov J.K.,Clausen B.S.,Topsøe H.,Lægsgaard E.,Besenbacher F. (2004) Hydrodesulfurization reaction pathways on MoS2 nanoclusters revealed by scanning tunneling microscopy, J. Catal. 224, 94. [CrossRef] [Google Scholar]
  • Griboval A.,Blanchard P.,Payen E.,Fournier M.,Dubois J.L. (1998) Alumina supported HDS catalysts prepared by impregnation with new heteropolycompounds. Comparison with catalysts prepared by conventional Co–Mo–P coimpregnation, Catal. Today 45, 277. [CrossRef] [Google Scholar]
  • Guichard B.,Roy-Auberger M.,Devers E.,Legens C.,Raybaud P. (2008) Aging of Co(Ni)MoP/Al2O3 catalysts in working state, Catal. Today 130, 97. [CrossRef] [Google Scholar]
  • Wang X.,Saleh R.Y.,Ozkan U.S. (2005) Effect of S-compounds and CO on hydrogenation of aldehydes over reduced and sulfided Ni–Mo/Al2O3 catalysts, Appl. Catal. A: Gen. 286, 111. [CrossRef] [Google Scholar]
  • Escobar J.,Barrera M.C.,Toledo J.A.,Cortés-Jácome M.A.,Angeles-Chávez C.,Núñez S.,Santes V.,Gómez E.,Díaz L.,Romero E.,Pacheco J.G. (2009) Effect of ethyleneglycol addition on the properties of P-doped NiMo/Al2O3 HDS catalysts: Part I. Materials preparation and characterization, Appl. Catal. B: Environ. 88, 564. [CrossRef] [Google Scholar]
  • Krebs E., Daudin A., Raybaud P. (2009) A DFT Study of CoMoS and NiMoS Catalysts: from nano-crystallite morphology to selective hydrodesulfurization, Oil Gas Sci. Technol. – Rev. IFP (this issue), DOI: 10.2516/ogst/2009004. [Google Scholar]
  • Krebs E.,Silvi B.,Raybaud P. (2007) Mixed sites and promoter segregation: A DFT study of the manifestation of Le Chatelier's principle for the Co(Ni)MoS active phase in reaction conditions, Catal. Today 130, 160. [CrossRef] [MathSciNet] [Google Scholar]
  • Kohn W.,Sham L.J. (1965) Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. A 140, 1133. [CrossRef] [MathSciNet] [Google Scholar]
  • Perdew J.P.,Wang Y. (1992) Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45, 13244. [NASA ADS] [CrossRef] [Google Scholar]
  • Kresse G.,Furthmüller J. (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a planewave basis set, Comput. Mater. Sci. 6, 15. [CrossRef] [MathSciNet] [Google Scholar]
  • Lauritsen J.V.,Kibsgaard J.,Olesen G.H.,Moses P.G.,Hinnemann B.,Helveg S.,Norskøv J.K.,Clausen B.S.,Topsøe H.,Lægsgaard E.,Besenbacher F. (2007) Location and coordination of promoter atoms in Co- and Ni-promoted MoS2-based hydrotreating catalysts, J. Catal. 249, 220. [CrossRef] [Google Scholar]
  • Lauritsen J.V.,Nyberg M.,Vang R.T.,Bollinger M.V.,Clausen B.S.,Topsoe H.,Jacobsen K.W.,Laegsgaard E.,Norskov J.K.,Besenbacher F. (2003) Chemistry of onedimensional metallic edge states in MoS2 nanoclusters, Nanotechnology 14, 385. [CrossRef] [Google Scholar]
  • Raybaud P.,Hafner J.,Kresse G.,Kasztelan S.,Toulhoat H. (2000) Structure, Energetics, and Electronic Properties of the Surface of a Promoted MoS2 Catalyst: An ab Initio Local Density Functional Study, J. Catal. 190, 128. [CrossRef] [Google Scholar]
  • Guernalec N.,Geantet C.,Raybaud P.,Cseri T.,Aouine M.,Vrinat M. (2006) Dual Effect of H2S on Volcano Curves in Hydrotreating Sulfide Catalysis, Oil Gas Sci. Technol. – Rev. IFP 61, 515. [CrossRef] [EDP Sciences] [Google Scholar]
  • Krebs E.,Silvi B.,Daudin A.,Raybaud P. (2008) A DFT study of the origin of the HDS/HydO selectivity on Co(Ni)MoS active phases, J. Catal. 260, 276. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.