Dossier: Catalysts and Adsorbents: from Molecular Insight to Industrial Optimization
Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP
Volume 64, Number 6, November-December 2009
Dossier: Catalysts and Adsorbents: from Molecular Insight to Industrial Optimization
Page(s) 719 - 730
DOI https://doi.org/10.2516/ogst/2009037
Published online 25 September 2009
  • Breysse M.,Bennet B.A.,Chadwick D.,Vrinat M. (1981) B. Soc. Chim. Belg. 90, 1271. [CrossRef] [Google Scholar]
  • Alstrup I.,Chorkendorff I.,Candia R.,Clausen B.S.,Topsoe H. (1982) A combined X-Ray photoelectron and Mössbauer emission spectroscopy study of the state of cobalt in sulfided, supported, and unsupported Co-Mo catalysts, J. Catal. 77, 397. [CrossRef] [Google Scholar]
  • Gandubert A.D.,Legens C.,Guillaume D.,Rebours S.,Payen E. (2006) X-ray photoelectron spectroscopy surface quantification of sulfided CoMoP catalysts. Relation between activity and promoted sites, Surf. Interface Anal. 28, 206. [CrossRef] [Google Scholar]
  • Coulier L., de Beer V.H.J., van Veen J.A.R.,Niemantsverdriet J.W. (2000) On the formation of cobaltmolybdenum sulfides in silica-supported hydrotreating model catalysts, Top. Catal. 13, 99. [CrossRef] [Google Scholar]
  • Garreau F.B.,Toulhoat H.,Kasztelan S.,Paulus R. (1986) Low temperature synthesis of mixed NiMo sulfides: structural, textural and catalytic properties, Polyhedron 5, 211. [CrossRef] [Google Scholar]
  • Houssenbay S.,Kasztelan S.,Toulhoat H.,Bonnelle J.P.,Grimblot J. (1989) Nature of the different nickel species in sulfided bulk and alumina-supported nickel-molybdenum hydrotreating catalysts, J. Phys. Chem. 93, 7176. [CrossRef] [Google Scholar]
  • Coulier L., de Beer V.H.J., van Veen J.A.R.,Niemantsverdriet J.W. (2001) Correlation between Hydrodesulfurization Activity and Order of Ni and Mo Sulfidation in Planar Silica-Supported NiMo Catalysts: The Influence of Chelating Agents, J. Catal. 197, 26. [CrossRef] [Google Scholar]
  • Gandubert A.D.,Legens C.,Guillaume D.,Rebours S.,Payen E. (2007) X-ray photoelectron spectroscopy surface quantification of sulfided CoMoP catalysts - Relation between activity and promoted sites, Oil Gas Sci. Technol. – Rev. IFP 62, 79. [CrossRef] [EDP Sciences] [Google Scholar]
  • Gandubert A.D.,Krebs E.,Legens C.,Costa D.,Guillaume D.,Raybaud P. (2008) Optimal promoter edge decoration of CoMoS catalysts: A combined theoretical and experimental study, Catal. Today 130, 149. [CrossRef] [Google Scholar]
  • Raybaud P. (2007) Understanding and predicting improved sulfide catalysts: Insights from first principles modeling, Appl. Catal. A: Gen. 322, 76. [CrossRef] [Google Scholar]
  • Paul J.-F.,Cristol S.,Payen E. (2008) Computational studies of (mixed) sulfide hydrotreating catalysts, Catal. Today 130, 139. [CrossRef] [Google Scholar]
  • Kasztelan S.,Toulhoat H.,Grimblot J.,Bonnelle J.P. (1984) A geometrical model of hydrotreating catalysts. Prediction of catalytic activity variations with composition, Appl. Catal. A: Gen. 13, 127. [CrossRef] [Google Scholar]
  • Schweiger H.,Raybaud P.,Kresse G.,Toulhoat H. (2002) Shape and Edge Sites Modifications of MoS2 Catalytic Nanoparticles Induced by Working Conditions: A Theoretical Study, J. Catal. 207, 76. [CrossRef] [Google Scholar]
  • Schweiger H.,Raybaud P.,Toulhoat H. (2002) Promoter sensitive shapes of Co(Ni)MoS nanocatalysts in sulfo-reductive conditions, J. Catal. 212, 33. [CrossRef] [Google Scholar]
  • Byskov L.S.,Hammer B.,Nørskov J.K.,Clausen B.S.,Topsøe H. (1997) Sulfur bonding in MoS2 and Co-Mo-S structures, Catal. Lett. 47, 177. [CrossRef] [Google Scholar]
  • Lauritsen J.V.,Nyberg M.,Nørskov J.K.,Clausen B.S.,Topsøe H.,Lægsgaard E.,Besenbacher F. (2004) Hydrodesulfurization reaction pathways on MoS2 nanoclusters revealed by scanning tunneling microscopy, J. Catal. 224, 94. [CrossRef] [Google Scholar]
  • Griboval A.,Blanchard P.,Payen E.,Fournier M.,Dubois J.L. (1998) Alumina supported HDS catalysts prepared by impregnation with new heteropolycompounds. Comparison with catalysts prepared by conventional Co–Mo–P coimpregnation, Catal. Today 45, 277. [CrossRef] [Google Scholar]
  • Guichard B.,Roy-Auberger M.,Devers E.,Legens C.,Raybaud P. (2008) Aging of Co(Ni)MoP/Al2O3 catalysts in working state, Catal. Today 130, 97. [CrossRef] [Google Scholar]
  • Wang X.,Saleh R.Y.,Ozkan U.S. (2005) Effect of S-compounds and CO on hydrogenation of aldehydes over reduced and sulfided Ni–Mo/Al2O3 catalysts, Appl. Catal. A: Gen. 286, 111. [CrossRef] [Google Scholar]
  • Escobar J.,Barrera M.C.,Toledo J.A.,Cortés-Jácome M.A.,Angeles-Chávez C.,Núñez S.,Santes V.,Gómez E.,Díaz L.,Romero E.,Pacheco J.G. (2009) Effect of ethyleneglycol addition on the properties of P-doped NiMo/Al2O3 HDS catalysts: Part I. Materials preparation and characterization, Appl. Catal. B: Environ. 88, 564. [CrossRef] [Google Scholar]
  • Krebs E., Daudin A., Raybaud P. (2009) A DFT Study of CoMoS and NiMoS Catalysts: from nano-crystallite morphology to selective hydrodesulfurization, Oil Gas Sci. Technol. – Rev. IFP (this issue), DOI: 10.2516/ogst/2009004. [Google Scholar]
  • Krebs E.,Silvi B.,Raybaud P. (2007) Mixed sites and promoter segregation: A DFT study of the manifestation of Le Chatelier's principle for the Co(Ni)MoS active phase in reaction conditions, Catal. Today 130, 160. [CrossRef] [MathSciNet] [Google Scholar]
  • Kohn W.,Sham L.J. (1965) Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. A 140, 1133. [CrossRef] [MathSciNet] [Google Scholar]
  • Perdew J.P.,Wang Y. (1992) Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45, 13244. [CrossRef] [Google Scholar]
  • Kresse G.,Furthmüller J. (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a planewave basis set, Comput. Mater. Sci. 6, 15. [CrossRef] [MathSciNet] [Google Scholar]
  • Lauritsen J.V.,Kibsgaard J.,Olesen G.H.,Moses P.G.,Hinnemann B.,Helveg S.,Norskøv J.K.,Clausen B.S.,Topsøe H.,Lægsgaard E.,Besenbacher F. (2007) Location and coordination of promoter atoms in Co- and Ni-promoted MoS2-based hydrotreating catalysts, J. Catal. 249, 220. [CrossRef] [Google Scholar]
  • Lauritsen J.V.,Nyberg M.,Vang R.T.,Bollinger M.V.,Clausen B.S.,Topsoe H.,Jacobsen K.W.,Laegsgaard E.,Norskov J.K.,Besenbacher F. (2003) Chemistry of onedimensional metallic edge states in MoS2 nanoclusters, Nanotechnology 14, 385. [CrossRef] [Google Scholar]
  • Raybaud P.,Hafner J.,Kresse G.,Kasztelan S.,Toulhoat H. (2000) Structure, Energetics, and Electronic Properties of the Surface of a Promoted MoS2 Catalyst: An ab Initio Local Density Functional Study, J. Catal. 190, 128. [CrossRef] [Google Scholar]
  • Guernalec N.,Geantet C.,Raybaud P.,Cseri T.,Aouine M.,Vrinat M. (2006) Dual Effect of H2S on Volcano Curves in Hydrotreating Sulfide Catalysis, Oil Gas Sci. Technol. – Rev. IFP 61, 515. [CrossRef] [EDP Sciences] [Google Scholar]
  • Krebs E.,Silvi B.,Daudin A.,Raybaud P. (2008) A DFT study of the origin of the HDS/HydO selectivity on Co(Ni)MoS active phases, J. Catal. 260, 276. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.