Dossier: Catalysts and Adsorbents: from Molecular Insight to Industrial Optimization
Open Access
Numéro
Oil & Gas Science and Technology - Rev. IFP
Volume 64, Numéro 6, November-December 2009
Dossier: Catalysts and Adsorbents: from Molecular Insight to Industrial Optimization
Page(s) 707 - 718
DOI https://doi.org/10.2516/ogst/2009004
Publié en ligne 8 avril 2009
  • Euzen P., Raybaud P., Krokidis X., Toulhoat H., Loarer J.-L. Le, Jolivet J.-P., Froidefond C. (2002) Handbook of Porous Solids, Schüth F., Sing K.S.W., Weitkamp J. (Eds.), Wiley-VCH Verlag GmbH, Weinheim, Vol. 3, p. 1591. [Google Scholar]
  • Topsøe H., Clausen B.S., Massoth F.E. (1996) Hydrotreating Catalysis - Science and Technology, Anderson J.R., Boudart M. (Eds.), Springer-Verlag, Berlin/Heidelberg, Vol. 11. [Google Scholar]
  • Prins R. (1997) Handbook of Heterogeneous Catalysis, Ertl G., Knözinger H., Weitkamp J. (Eds.), Wiley-VHC Verlagsgesellschaft, Weinheim, Vol. 4, p. 1908. [Google Scholar]
  • Delannay F. (1985) High resolution electron microscopy of hydrodesulfurization catalysts: A review, Appl. Catal. 16, 135. [CrossRef] [Google Scholar]
  • Payen E.,Kasztelan S.,Houssenbay S.,Szymansky R.,Grimblot J. (1989) Genesis and characterization by laser Raman spectroscopy and high-resolution electron microscopy of supported molybdenum disulfide crystallites, J. Phys. Chem. 93, 6501. [CrossRef] [Google Scholar]
  • Alstrup I.,Chorkendorff I.,Candia R.,Clausen B.S.,Topsoe H. (1982) A combined X-Ray photoelectron and Mössbauer emission spectroscopy study of the state of cobalt in sulfided, supported, and unsupported Co-Mo catalysts, J. Catal. 77, 397. [CrossRef] [Google Scholar]
  • Kasztelan S.,Grimblot J.,Bonnelle J.P.,Payen E.,Toulhoat H.,Jacquin Y. (1983) Preparation of Co-Mo-γ-Al2O3 and Ni-Mo-γ-Al2O3 catalysts by pH regulation of molybdenum solution. characterization of supported species and hydrogenation activities, Appl. Catal. 7, 91. [CrossRef] [Google Scholar]
  • Garreau F.B.,Toulhoat H.,Kasztelan S.,Paulus R. (1986) Lowtemperature synthesis of mixed NiMo sulfides: structural, textural and catalytic properties, Polyhedron 5, 211. [CrossRef] [Google Scholar]
  • Houssenbay S., Kasztelan S., Toulhoat H., Bonnelle J.P., Grimblot J. (1989) Nature of the different nickel species in sulfided bulk and alumina-supported nickel-molybdenum hydrotreating catalysts,J. Phys. Chem. 93, 7176. [Google Scholar]
  • Wivel C.,Candia R.,Clausen B.S.,Mørup S.,Topsøe H. (1981) On the catalytic significance of a Co-Mo-S phase in CoMo/Al2O3 hydrodesulfurization catalysts: Combined in situ Mössbauer emission spectroscopy and activity studies, J. Catal. 68, 453. [CrossRef] [Google Scholar]
  • Breysse M.,Frety R.,Benaïchouba B.,Bussière P. (1983) Radiochem. Radioanal. Lett. 59, 265. [Google Scholar]
  • Breysse M.,Frety R.,Vrinat M. (1984) Unsupported cobalt molybdenum sulfide catalysts Part II: Characterization and evolution of physicochemical properties during catalytic reaction, Appl. Catal. 12, 165. [CrossRef] [Google Scholar]
  • Payen E.,Kasztelan S.,Grimblot J. (1988) In situ Laser Raman Spectroscopy of the sulphiding of WO3(MoO3)/γ-Al2O3 catalysts, J. Mol. Struct. 174, 71. [CrossRef] [Google Scholar]
  • Clausen B.S.,Topsøe H.,Candia R.,Villadsen J.,Lengeler B.,Als-Nielsen J.,Christensen F. (1981) Extended x-ray absorption fine structure study of the cobalt-molybdenum hydrodesulfurization catalysts, J. Phys. Chem. 85, 3868. [CrossRef] [Google Scholar]
  • Clausen B.S.,Topsøe H. (1989) In-situ studies of catalysts by XAFS and Mössbauer spectroscopy, Hyperfine Interact. 47, 203. [CrossRef] [Google Scholar]
  • Bouwens S.M.A.M.,Koningsberger D.C., de Beer V.H.J.,Louwers S.P.A.,Prins R. (1990) EXAFS study of the local structure of Ni in Ni-MoS2/C hydrodesulfurization catalysts, Catal. Lett. 5, 273. [CrossRef] [Google Scholar]
  • Calais C.,Matsubayashi N.,Geantet C.,Yoshimura Y.,Shimada H.,Nishijima A.,Lacroix M.,Breysse M. (1998) Crystallite Size Determination of Highly Dispersed Unsupported MoS2 Catalysts, J. Catal. 174, 130. [CrossRef] [Google Scholar]
  • Shido T.,Prins R. (1998) Why EXAFS Underestimated the Size of Small Supported MoS2 Particles, J. Phys. Chem. B. 102, 8426. [CrossRef] [Google Scholar]
  • Topsøe N.-Y.,Topsøe H. (1983) Characterization of the structures and active sites in sulfided Co-Mo/Al2O3 and Ni-Mo/Al2O3 catalysts by NO chemisorption, J. Catal. 84, 386. [CrossRef] [Google Scholar]
  • Maugé F.,Duchet J.C.,Lavalley J.C.,Houssenbay S.,Payen E.,Grimblot J.,Kasztelan S. (1991) The sulphided state of nickel molybdenum catalysts supported on zirconia and aluminates, Catal. Today 10, 561. [CrossRef] [Google Scholar]
  • De la Rosa M.P.,Texier S.,Berhault G.,Camacho A.,Yacaman M.J.,Mehta A.,Fuentes S.,Montoya J.A.,Murrieta F.,Chianelli R.R. (2004) Structural studies of catalytically stabilized model and industrial-supported hydrodesulfurization catalysts, J. Catal. 225, 288. [CrossRef] [Google Scholar]
  • Raybaud P. (2007) Understanding and predicting improved sulfide catalysts: Insights from first principles modeling, Appl. Catal. A: Gen. 322, 76. [CrossRef] [Google Scholar]
  • Paul J.-F.,Cristol S.,Payen E. (2008) Computational studies of (mixed) sulfide hydrotreating catalysts, Catal. Today 130, 139. [CrossRef] [Google Scholar]
  • Raybaud P.,Hafner J.,Kresse G.,Kasztelan S.,Toulhoat H. (2000) Structure, Energetics, and Electronic Properties of the Surface of a Promoted MoS2 Catalyst: An ab Initio Local Density Functional Study, J. Catal. 190, 128. [CrossRef] [Google Scholar]
  • Schweiger H.,Raybaud P.,Toulhoat H. (2002) Promoter Sensitive shapes of Co(Ni)MoS Nanocatalysts in Sulfo-reductive Conditions, J. Catal. 212, 33. [CrossRef] [Google Scholar]
  • Byskov L.S.,Hammer B.,Norskov J.K.,Clausen B.S.,Topsoe H. (1997) Sulfur bonding in MoS2 and Co-Mo-S structures, Catal. Lett. 47, 177. [CrossRef] [Google Scholar]
  • Lauritsen J.V., Nyberg, M.,Nørskov J.K.,Clausen B.S.,Topsøe H.,Lægsgaard E.,Besenbacher F. (2004) Hydrodesulfurization reaction pathways on MoS2 nanoclusters revealed by scanning tunneling microscopy, J. Catal. 224, 94. [CrossRef] [Google Scholar]
  • Lauritsen J.V.,Kibsgaard J.,Olesen G.H.,Moses P.G.,Hinnemann B.,Helveg S.,Nørskov J.K.,Clausen B.S.,Topsøe H.,Laegsgaard E.,Besenbacher F. (2007) Location and coordination of promoter atoms in Co- and Ni-promoted MoS2-based hydrotreating catalysts, J. Catal. 249, 220. [CrossRef] [Google Scholar]
  • Daudin A.,Brunet S.,Perot G.,Raybaud P.,Bouchy C. (2007) Transformation of a model FCC gasoline olefin over transition monometallic sulfide catalysts, J. Catal. 248, 111. [CrossRef] [Google Scholar]
  • Daudin A.,Lamic A.F.,Perot G.,Brunet S.,Raybaud P.,Bouchy C. (2008) Microkinetic interpretation of HDS/HYDO selectivity of the transformation of a model FCC gasoline over transition metal sulfides, Catal. Today 130, 221. [CrossRef] [Google Scholar]
  • Brunet S.,Mey D.,Perot G.,Bouchy C.,Diehl F. (2005) On the hydrodesulfurization of FCC gasoline: a review, Appl. Catal. A: Gen. 278, 143. [Google Scholar]
  • Mey D.,Brunet S.,Canaff C.,Maugé F.,Bouchy C.,Diehl F. (2004) HDS of a model FCC gasoline over a sulfided CoMo/Al2O2 catalyst: Effect of the addition of potassium, J. Catal. 227, 436. [CrossRef] [Google Scholar]
  • Lamic A.F.,Daudin A.,Brunet S.,Legens C.,Bouchy C.,Devers E. (2008) Effect of H2S partial pressure on the transformation of a model FCC gasoline olefin over unsupported molyb-denum sulfide-based catalysts, Appl. Catal. A: Gen. 344, 198. [CrossRef] [Google Scholar]
  • Choi J.-S.,Mauge F.,Pichon C.,Olivier-Fourcade J.,Jumas J.-C.,Petit-Clair C.,Uzio D. (2004) Alumina-supported cobalt-molybdenum sulfide modified by tin via surface organometallic chemistry: application to the simultaneous hydrodesulfurization of thiophenic compounds and the hydrogenation of olefins, Appl. Catal. A: Gen. 267, 203. [CrossRef] [Google Scholar]
  • Cristol S.,Paul J.F.,Payen E.,Bougeard D.,Hutschka F.,Clemendot S. (2004) DBT derivatives adsorption over molybdenum sulfide catalysts: a theoretical study, J. Catal. 224, 138. [CrossRef] [Google Scholar]
  • Cristol S.,Paul J.F.,Schovsbo C.,Veilly E.,Payen E. (2006) DFT study of thiophene adsorption on molybdenum sulfide, J. Catal. 239, 145. [CrossRef] [Google Scholar]
  • Raybaud P.,Hafner J.,Kresse G.,Toulhoat H. (1998) Adsorption of thiophene on the catalytically active surface of MoS2: An ab initio local-density-functional study, Phys. Rev. Lett. 80, 1481. [CrossRef] [Google Scholar]
  • Sun M.,Nelson A.E.,Adjaye J. (2006) Adsorption Thermodynamics of Sulfur- and Nitrogen-containing Molecules on NiMoS: A DFT Study, Catal. Lett. 109, 133. [CrossRef] [Google Scholar]
  • Orita H.,Uchida K.,Itoh N. (2004) A volcano-type relationship between the adsorption energy of thiophene on promoted MoS2 cluster-model catalysts and the experimental HDS activity: ab initio density functional study, Appl. Catal. A: Gen. 258, 115. [Google Scholar]
  • Weber T., Van Veen J.A. (2008) A density functional theory study of the hydrodesulfurization reaction of dibenzothiophene to biphenyl on a single-layer NiMoS cluster, Catal. Today 130, 170. [CrossRef] [Google Scholar]
  • Sun M.Y.,Nelson A.E.,Adjaye J. (2005) Adsorption and hydrogenation of pyridine and pyrrole on NiMoS: an ab initio densityfunctional theory study, J. Catal. 231, 223. [CrossRef] [Google Scholar]
  • Sun M.Y.,Nelson A.E.,Adjaye J. (2005) First principles study of heavy oil organonitrogen adsorption on NiMoS hydrotreating catalysts, Catal. Today 109, 49. [CrossRef] [Google Scholar]
  • Todorova T.,Prins R.,Weber T. (2005) A density functional theory study of the hydrogenolysis reaction of CH3SH to CH4 on the catalytically active (100) edge of 2H-MoS2, J. Catal. 236, 190. [CrossRef] [Google Scholar]
  • Moses P.G.,Hinnemann B.,Topsoe H.,Norskov J. (2007) The hydrogenation and direct desulfurization reaction pathway in thiophene hydrodesulfurization over MoS2 catalysts at realistic conditions: A density functional study, J. Catal. 248, 188-203. [CrossRef] [Google Scholar]
  • Krebs E.,Silvi B.,Daudin A.,Raybaud P. (2008) A DFT study of the origin of the HDS/HydO selectivity on Co(Ni)MoS active phases, J. Catal. 260, 276. [CrossRef] [Google Scholar]
  • Scheffler M.,Dabrowski J. (1988) Parameter-free calculations of total energies, interatomic forces and vibrational entropies of defects in semiconductors, Philos. Mag. A 58, 107. [CrossRef] [Google Scholar]
  • Quian G.X., Martin R.M., Chadi D.J. (1988) First-principles study of the atomic reconstructions and energies of Ga- and As-stabilized GaAs(100), Phys. Rev. B 38 11, 7649. [Google Scholar]
  • Kadas K., Kern G., Hafner J. (1998) Ab initio studies of the (111) and (-1 -1 -1) surfaces of cubic BN: Structure and energetics, Phys. Rev. B 58 23, 1. [Google Scholar]
  • Wang X.-G.,Weiss W.,Shaikhutdinov Sh.K.,Ritter M.,Petersen M.,Wagner F.,Schlögl R.,Scheffler M. (1999) The Hematite (α-Fe2O3) (0001) Surface: Evidence for Domains of Distinct Chemistry, Phys. Rev. Lett. 81, 1038. [CrossRef] [Google Scholar]
  • Reuter K., Stampfl C., Scheffler M. (2005) Handbook of Materials Modeling - Ab initio Thermodynamics and Statistical Mechanics of Surface Properties and Functions, Yip S. (Ed.), Springer, Berlin, Vol. 1. [Google Scholar]
  • Raybaud P., Costa D., CorralValero M.,Arrouvel C.,Digne M.,Sautet P.,Toulhoat H. (2008) First principles surface thermodynamics of industrial supported catalysts in working conditions, J. Phys. Cond. 20, 064235. [CrossRef] [Google Scholar]
  • Raybaud P.,Hafner J.,Kresse G.,Kasztelan S.,Toulhoat H. (2000) Ab Initio Study of the H2-H2S/MoS2 Gas-Solid Interface: The Nature of the Catalytically Active Sites, J. Catal. 189, 129. [CrossRef] [Google Scholar]
  • Digne M.,Sautet P.,Raybaud P.,Euzen P.,Toulhoat H. (2002) Hydroxyl groups on gamma Alumina Surfaces: a DFT Study, J. Catal. 211, 1. [CrossRef] [Google Scholar]
  • Arrouvel C.,Breysse M.,Toulhoat H.,Raybaud P. (2005) A density functional theory comparison of anatase (TiO2)- and - Al2O3-supported MoS2 catalysts, J. Catal. 232, 161. [CrossRef] [Google Scholar]
  • Costa D.,Arrouvel C.,Breysse M.,Toulhoat H.,Raybaud P. (2007) Edge wetting effects of γ-Al2O3 and anatase-TiO2 supports by MoS2 and CoMoS active phases: A DFT study, J. Catal. 246, 325. [CrossRef] [Google Scholar]
  • Perdew J.P.,Wang Y. (1992) Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45, 13244. [NASA ADS] [CrossRef] [Google Scholar]
  • Hohenberg P.,Kohn W. (1964) Inhomogeneous Electron, Gas, Phys. Rev. B 136, 864. [Google Scholar]
  • Kohn W.,Sham L.J. (1965) Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. A 140, 1133. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  • Kresse G.,Furthmüller J. (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a planewave basis set, Comput. Mater. Sci. 6, 15. [Google Scholar]
  • Kresse G.,Joubert D. (1999) From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59, 1758. [Google Scholar]
  • Byskov L.S.,Nørskov J.K.,Clausen B.S.,Topsøe H. (1999) DFT Calculations of Unpromoted and Promoted MoS2-Based Hydrodesulfurization Catalysts, J. Catal. 187, 109. [CrossRef] [Google Scholar]
  • Sun M.,Nelson A.E.,Adjaye J. (2004) On the incorporation of nickel and cobalt into MoS2-edge structures, J. Catal. 226, 32. [CrossRef] [Google Scholar]
  • Krebs E.,Silvi B.,Raybaud P. (2008) Mixed sites and promoter segregation: A DFT study of the manifestation of Le Chatelier's principle for the Co(Ni)MoS active phase in reaction conditions, Catal. Today 130, 160. [CrossRef] [MathSciNet] [Google Scholar]
  • Okamoto Y.,Kawano M.,Kawabata T.,Kubota T.,Hiromitsu I. (2005) Structure of the Active Sites of Co-Mo Hydrodesulfurization Catalysts as Studied by Magnetic Susceptibility Measurement and NO Adsorption, J. Phys. Chem. B 109, 288. [CrossRef] [PubMed] [Google Scholar]
  • Lauritsen J.V.,Bollinger M.V.,Lægsgaard E.,Jacobsen K.W.,Nørskov J.K.,Clausen B.S.,Topsøe H.,Besenbacher F. (2004) Atomic-scale insight into structure and morphology changes of MoS2 nanoclusters in hydrotreating catalysts, J. Catal. 221, 510. [Google Scholar]
  • Topsøe H.,Clausen B.S.,Topsøe N.-Y.,Pedersen K.J.,Niemann W.,Müller A.,Bögge H.,Lengeler B. (1987) Inorganic cluster compounds as models for the structure of active sites in promoted hydrodesulphurization catalysts, J. Chem. Soc. Farad. T. 1 83, 2157. [CrossRef] [Google Scholar]
  • Bouwens S.M.A.M., Veen J.A.R. van, Koningsberger D.C., Beer V.H.J. de,Prins R. (1991) EXAFS determination of the structure of cobalt in carbon-supported cobalt and cobalt-molybdenum sulfide hydrodesulfurization catalysts, J. Phys. Chem. 95, 123. [CrossRef] [Google Scholar]
  • Niemann W.,Clausen B.S.,Topsoe H. (1990) X-Ray absorption studies of the Ni environment in Ni-Mo-S, Catal. Lett. 4, 355. [CrossRef] [Google Scholar]
  • Louwers S.P.A,Prins R. (1992) Ni EXAFS studies of the Ni-Mo-S structure in carbon-supported and alumina-supported Ni-Mo catalysts, J. Catal. 133, 94. [CrossRef] [Google Scholar]
  • Curie M.P. (1885) Sur la formation des cristaux et sur les constantes capillaires de leurs différentes faces, B. Soc. Min. France 8, 145. [Google Scholar]
  • Wulff G. (1901) Zur Frage der Geschwindigkeit des Wachstums und der Auflösung der Krystallflächen, Z. Kristallogr. 34, 449. [Google Scholar]
  • Gandubert A.,Krebs E.,Legens C.,Costa D.,Guillaume D.,Raybaud P. (2008) Optimal promoter edge decoration of CoMoS catalysts: A combined theoretical and experimental study, Catal. Today 130, 149. [CrossRef] [Google Scholar]
  • Gandubert A.,Legens C.,Guillaume D.,Rebours S.,Payen E. (2007) X-ray photoelectron spectroscopy surface quantification of sulfided CoMoP catalysts - Relation between activity and promoted sites - Part I: Influence of the Co/Mo ratio, Oil Gas Sci. Technol. - Rev. IFP 62, 79. [CrossRef] [EDP Sciences] [Google Scholar]
  • Travert A.,Dujardin C.,Maugé F.,Veilly E.,Cristol S.,Paul J.-F.,Payen E. (2006) CO Adsorption on CoMo and NiMo Sulfide Catalysts: A Combined IR and DFT Study, J. Phys. Chem. B 110, 1261-1270. [CrossRef] [PubMed] [Google Scholar]
  • Logadottir A.,Rod T.H.,Nørskov J.K.,Hammer B.,Dahl S.,Jacobsen C.J.H. (2001) The Bronsted-Evans-Polanyi Relation and the Volcano Plot for Ammonia Synthesis over Transition Metal Catalysts, J. Catal. 197, 229. [CrossRef] [Google Scholar]
  • Raybaud P.,Hafner J.,Kresse G.,Toulhoat H. (1997) Ab initio density functional studies of transition-metal sulphides: I. Crytal structure and cohesive properties, J. Phys. Cond. 9, 11085. [Google Scholar]
  • Toulhoat H.,Raybaud P.,Kasztelan S.,Kresse G.,Hafner J. (1999) Transition metals to sulfur binding energies relationship to catalytic activities in HDS: back to Sabatier with first principle calculations, Catal. Today 50, 629. [CrossRef] [Google Scholar]
  • Toulhoat H.,Raybaud P. (2003) Kinetic interpretation of catalytic activity patterns based on theoretical descriptors, J. Catal. 216, 63. [CrossRef] [Google Scholar]
  • Sabatier P. (1911) Hydrogénations et déshydrogénations par catalyse, Berichte der Deutschen Chem. Gesellschaft 44, 2001. [CrossRef] [Google Scholar]
  • Krebs E., Silvi B., Raybaud P. (2009) Topological analysis of the interactions between organic molecules and Co(Ni)MoS catalytic active phase, J. Comput. Theoretical Chem. DOI: 10.1021/ct800344r. [Google Scholar]
  • Miller J.T.,Reagan W.J.,Kaduk J.A.,Marshall C.L.,Kropf A.J. (2000) Selective Hydrodesulfurization of FCC Naphtha with Supported MoS2 Catalysts: The Role of Cobalt, J. Catal. 193, 123-131. [CrossRef] [Google Scholar]
  • Marchand K., Legens C., Guillaume D., Raybaud P. (2009) A rational comparison of the optimal promoter edge decoration of HDT Ni MoS vs CoMoS catalysts, Oil Gas Sci. Technol., this issue. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.