Dossier: Catalysts and Adsorbents: from Molecular Insight to Industrial Optimization
Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP
Volume 64, Number 6, November-December 2009
Dossier: Catalysts and Adsorbents: from Molecular Insight to Industrial Optimization
Page(s) 707 - 718
DOI https://doi.org/10.2516/ogst/2009004
Published online 08 April 2009
  • Euzen P., Raybaud P., Krokidis X., Toulhoat H., Loarer J.-L. Le, Jolivet J.-P., Froidefond C. (2002) Handbook of Porous Solids, Schüth F., Sing K.S.W., Weitkamp J. (Eds.), Wiley-VCH Verlag GmbH, Weinheim, Vol. 3, p. 1591. [Google Scholar]
  • Topsøe H., Clausen B.S., Massoth F.E. (1996) Hydrotreating Catalysis - Science and Technology, Anderson J.R., Boudart M. (Eds.), Springer-Verlag, Berlin/Heidelberg, Vol. 11. [Google Scholar]
  • Prins R. (1997) Handbook of Heterogeneous Catalysis, Ertl G., Knözinger H., Weitkamp J. (Eds.), Wiley-VHC Verlagsgesellschaft, Weinheim, Vol. 4, p. 1908. [Google Scholar]
  • Delannay F. (1985) High resolution electron microscopy of hydrodesulfurization catalysts: A review, Appl. Catal. 16, 135. [CrossRef] [Google Scholar]
  • Payen E.,Kasztelan S.,Houssenbay S.,Szymansky R.,Grimblot J. (1989) Genesis and characterization by laser Raman spectroscopy and high-resolution electron microscopy of supported molybdenum disulfide crystallites, J. Phys. Chem. 93, 6501. [CrossRef] [Google Scholar]
  • Alstrup I.,Chorkendorff I.,Candia R.,Clausen B.S.,Topsoe H. (1982) A combined X-Ray photoelectron and Mössbauer emission spectroscopy study of the state of cobalt in sulfided, supported, and unsupported Co-Mo catalysts, J. Catal. 77, 397. [CrossRef] [Google Scholar]
  • Kasztelan S.,Grimblot J.,Bonnelle J.P.,Payen E.,Toulhoat H.,Jacquin Y. (1983) Preparation of Co-Mo-γ-Al2O3 and Ni-Mo-γ-Al2O3 catalysts by pH regulation of molybdenum solution. characterization of supported species and hydrogenation activities, Appl. Catal. 7, 91. [CrossRef] [Google Scholar]
  • Garreau F.B.,Toulhoat H.,Kasztelan S.,Paulus R. (1986) Lowtemperature synthesis of mixed NiMo sulfides: structural, textural and catalytic properties, Polyhedron 5, 211. [CrossRef] [Google Scholar]
  • Houssenbay S., Kasztelan S., Toulhoat H., Bonnelle J.P., Grimblot J. (1989) Nature of the different nickel species in sulfided bulk and alumina-supported nickel-molybdenum hydrotreating catalysts,J. Phys. Chem. 93, 7176. [Google Scholar]
  • Wivel C.,Candia R.,Clausen B.S.,Mørup S.,Topsøe H. (1981) On the catalytic significance of a Co-Mo-S phase in CoMo/Al2O3 hydrodesulfurization catalysts: Combined in situ Mössbauer emission spectroscopy and activity studies, J. Catal. 68, 453. [CrossRef] [Google Scholar]
  • Breysse M.,Frety R.,Benaïchouba B.,Bussière P. (1983) Radiochem. Radioanal. Lett. 59, 265. [Google Scholar]
  • Breysse M.,Frety R.,Vrinat M. (1984) Unsupported cobalt molybdenum sulfide catalysts Part II: Characterization and evolution of physicochemical properties during catalytic reaction, Appl. Catal. 12, 165. [CrossRef] [Google Scholar]
  • Payen E.,Kasztelan S.,Grimblot J. (1988) In situ Laser Raman Spectroscopy of the sulphiding of WO3(MoO3)/γ-Al2O3 catalysts, J. Mol. Struct. 174, 71. [CrossRef] [Google Scholar]
  • Clausen B.S.,Topsøe H.,Candia R.,Villadsen J.,Lengeler B.,Als-Nielsen J.,Christensen F. (1981) Extended x-ray absorption fine structure study of the cobalt-molybdenum hydrodesulfurization catalysts, J. Phys. Chem. 85, 3868. [CrossRef] [Google Scholar]
  • Clausen B.S.,Topsøe H. (1989) In-situ studies of catalysts by XAFS and Mössbauer spectroscopy, Hyperfine Interact. 47, 203. [CrossRef] [Google Scholar]
  • Bouwens S.M.A.M.,Koningsberger D.C., de Beer V.H.J.,Louwers S.P.A.,Prins R. (1990) EXAFS study of the local structure of Ni in Ni-MoS2/C hydrodesulfurization catalysts, Catal. Lett. 5, 273. [CrossRef] [Google Scholar]
  • Calais C.,Matsubayashi N.,Geantet C.,Yoshimura Y.,Shimada H.,Nishijima A.,Lacroix M.,Breysse M. (1998) Crystallite Size Determination of Highly Dispersed Unsupported MoS2 Catalysts, J. Catal. 174, 130. [CrossRef] [Google Scholar]
  • Shido T.,Prins R. (1998) Why EXAFS Underestimated the Size of Small Supported MoS2 Particles, J. Phys. Chem. B. 102, 8426. [CrossRef] [Google Scholar]
  • Topsøe N.-Y.,Topsøe H. (1983) Characterization of the structures and active sites in sulfided Co-Mo/Al2O3 and Ni-Mo/Al2O3 catalysts by NO chemisorption, J. Catal. 84, 386. [CrossRef] [Google Scholar]
  • Maugé F.,Duchet J.C.,Lavalley J.C.,Houssenbay S.,Payen E.,Grimblot J.,Kasztelan S. (1991) The sulphided state of nickel molybdenum catalysts supported on zirconia and aluminates, Catal. Today 10, 561. [CrossRef] [Google Scholar]
  • De la Rosa M.P.,Texier S.,Berhault G.,Camacho A.,Yacaman M.J.,Mehta A.,Fuentes S.,Montoya J.A.,Murrieta F.,Chianelli R.R. (2004) Structural studies of catalytically stabilized model and industrial-supported hydrodesulfurization catalysts, J. Catal. 225, 288. [CrossRef] [Google Scholar]
  • Raybaud P. (2007) Understanding and predicting improved sulfide catalysts: Insights from first principles modeling, Appl. Catal. A: Gen. 322, 76. [CrossRef] [Google Scholar]
  • Paul J.-F.,Cristol S.,Payen E. (2008) Computational studies of (mixed) sulfide hydrotreating catalysts, Catal. Today 130, 139. [CrossRef] [Google Scholar]
  • Raybaud P.,Hafner J.,Kresse G.,Kasztelan S.,Toulhoat H. (2000) Structure, Energetics, and Electronic Properties of the Surface of a Promoted MoS2 Catalyst: An ab Initio Local Density Functional Study, J. Catal. 190, 128. [CrossRef] [Google Scholar]
  • Schweiger H.,Raybaud P.,Toulhoat H. (2002) Promoter Sensitive shapes of Co(Ni)MoS Nanocatalysts in Sulfo-reductive Conditions, J. Catal. 212, 33. [CrossRef] [Google Scholar]
  • Byskov L.S.,Hammer B.,Norskov J.K.,Clausen B.S.,Topsoe H. (1997) Sulfur bonding in MoS2 and Co-Mo-S structures, Catal. Lett. 47, 177. [CrossRef] [Google Scholar]
  • Lauritsen J.V., Nyberg, M.,Nørskov J.K.,Clausen B.S.,Topsøe H.,Lægsgaard E.,Besenbacher F. (2004) Hydrodesulfurization reaction pathways on MoS2 nanoclusters revealed by scanning tunneling microscopy, J. Catal. 224, 94. [CrossRef] [Google Scholar]
  • Lauritsen J.V.,Kibsgaard J.,Olesen G.H.,Moses P.G.,Hinnemann B.,Helveg S.,Nørskov J.K.,Clausen B.S.,Topsøe H.,Laegsgaard E.,Besenbacher F. (2007) Location and coordination of promoter atoms in Co- and Ni-promoted MoS2-based hydrotreating catalysts, J. Catal. 249, 220. [CrossRef] [Google Scholar]
  • Daudin A.,Brunet S.,Perot G.,Raybaud P.,Bouchy C. (2007) Transformation of a model FCC gasoline olefin over transition monometallic sulfide catalysts, J. Catal. 248, 111. [CrossRef] [Google Scholar]
  • Daudin A.,Lamic A.F.,Perot G.,Brunet S.,Raybaud P.,Bouchy C. (2008) Microkinetic interpretation of HDS/HYDO selectivity of the transformation of a model FCC gasoline over transition metal sulfides, Catal. Today 130, 221. [CrossRef] [Google Scholar]
  • Brunet S.,Mey D.,Perot G.,Bouchy C.,Diehl F. (2005) On the hydrodesulfurization of FCC gasoline: a review, Appl. Catal. A: Gen. 278, 143. [Google Scholar]
  • Mey D.,Brunet S.,Canaff C.,Maugé F.,Bouchy C.,Diehl F. (2004) HDS of a model FCC gasoline over a sulfided CoMo/Al2O2 catalyst: Effect of the addition of potassium, J. Catal. 227, 436. [CrossRef] [Google Scholar]
  • Lamic A.F.,Daudin A.,Brunet S.,Legens C.,Bouchy C.,Devers E. (2008) Effect of H2S partial pressure on the transformation of a model FCC gasoline olefin over unsupported molyb-denum sulfide-based catalysts, Appl. Catal. A: Gen. 344, 198. [CrossRef] [Google Scholar]
  • Choi J.-S.,Mauge F.,Pichon C.,Olivier-Fourcade J.,Jumas J.-C.,Petit-Clair C.,Uzio D. (2004) Alumina-supported cobalt-molybdenum sulfide modified by tin via surface organometallic chemistry: application to the simultaneous hydrodesulfurization of thiophenic compounds and the hydrogenation of olefins, Appl. Catal. A: Gen. 267, 203. [CrossRef] [Google Scholar]
  • Cristol S.,Paul J.F.,Payen E.,Bougeard D.,Hutschka F.,Clemendot S. (2004) DBT derivatives adsorption over molybdenum sulfide catalysts: a theoretical study, J. Catal. 224, 138. [CrossRef] [Google Scholar]
  • Cristol S.,Paul J.F.,Schovsbo C.,Veilly E.,Payen E. (2006) DFT study of thiophene adsorption on molybdenum sulfide, J. Catal. 239, 145. [CrossRef] [Google Scholar]
  • Raybaud P.,Hafner J.,Kresse G.,Toulhoat H. (1998) Adsorption of thiophene on the catalytically active surface of MoS2: An ab initio local-density-functional study, Phys. Rev. Lett. 80, 1481. [CrossRef] [Google Scholar]
  • Sun M.,Nelson A.E.,Adjaye J. (2006) Adsorption Thermodynamics of Sulfur- and Nitrogen-containing Molecules on NiMoS: A DFT Study, Catal. Lett. 109, 133. [CrossRef] [Google Scholar]
  • Orita H.,Uchida K.,Itoh N. (2004) A volcano-type relationship between the adsorption energy of thiophene on promoted MoS2 cluster-model catalysts and the experimental HDS activity: ab initio density functional study, Appl. Catal. A: Gen. 258, 115. [Google Scholar]
  • Weber T., Van Veen J.A. (2008) A density functional theory study of the hydrodesulfurization reaction of dibenzothiophene to biphenyl on a single-layer NiMoS cluster, Catal. Today 130, 170. [CrossRef] [Google Scholar]
  • Sun M.Y.,Nelson A.E.,Adjaye J. (2005) Adsorption and hydrogenation of pyridine and pyrrole on NiMoS: an ab initio densityfunctional theory study, J. Catal. 231, 223. [CrossRef] [Google Scholar]
  • Sun M.Y.,Nelson A.E.,Adjaye J. (2005) First principles study of heavy oil organonitrogen adsorption on NiMoS hydrotreating catalysts, Catal. Today 109, 49. [CrossRef] [Google Scholar]
  • Todorova T.,Prins R.,Weber T. (2005) A density functional theory study of the hydrogenolysis reaction of CH3SH to CH4 on the catalytically active (100) edge of 2H-MoS2, J. Catal. 236, 190. [CrossRef] [Google Scholar]
  • Moses P.G.,Hinnemann B.,Topsoe H.,Norskov J. (2007) The hydrogenation and direct desulfurization reaction pathway in thiophene hydrodesulfurization over MoS2 catalysts at realistic conditions: A density functional study, J. Catal. 248, 188-203. [CrossRef] [Google Scholar]
  • Krebs E.,Silvi B.,Daudin A.,Raybaud P. (2008) A DFT study of the origin of the HDS/HydO selectivity on Co(Ni)MoS active phases, J. Catal. 260, 276. [CrossRef] [Google Scholar]
  • Scheffler M.,Dabrowski J. (1988) Parameter-free calculations of total energies, interatomic forces and vibrational entropies of defects in semiconductors, Philos. Mag. A 58, 107. [CrossRef] [Google Scholar]
  • Quian G.X., Martin R.M., Chadi D.J. (1988) First-principles study of the atomic reconstructions and energies of Ga- and As-stabilized GaAs(100), Phys. Rev. B 38 11, 7649. [Google Scholar]
  • Kadas K., Kern G., Hafner J. (1998) Ab initio studies of the (111) and (-1 -1 -1) surfaces of cubic BN: Structure and energetics, Phys. Rev. B 58 23, 1. [Google Scholar]
  • Wang X.-G.,Weiss W.,Shaikhutdinov Sh.K.,Ritter M.,Petersen M.,Wagner F.,Schlögl R.,Scheffler M. (1999) The Hematite (α-Fe2O3) (0001) Surface: Evidence for Domains of Distinct Chemistry, Phys. Rev. Lett. 81, 1038. [CrossRef] [Google Scholar]
  • Reuter K., Stampfl C., Scheffler M. (2005) Handbook of Materials Modeling - Ab initio Thermodynamics and Statistical Mechanics of Surface Properties and Functions, Yip S. (Ed.), Springer, Berlin, Vol. 1. [Google Scholar]
  • Raybaud P., Costa D., CorralValero M.,Arrouvel C.,Digne M.,Sautet P.,Toulhoat H. (2008) First principles surface thermodynamics of industrial supported catalysts in working conditions, J. Phys. Cond. 20, 064235. [CrossRef] [Google Scholar]
  • Raybaud P.,Hafner J.,Kresse G.,Kasztelan S.,Toulhoat H. (2000) Ab Initio Study of the H2-H2S/MoS2 Gas-Solid Interface: The Nature of the Catalytically Active Sites, J. Catal. 189, 129. [CrossRef] [Google Scholar]
  • Digne M.,Sautet P.,Raybaud P.,Euzen P.,Toulhoat H. (2002) Hydroxyl groups on gamma Alumina Surfaces: a DFT Study, J. Catal. 211, 1. [CrossRef] [Google Scholar]
  • Arrouvel C.,Breysse M.,Toulhoat H.,Raybaud P. (2005) A density functional theory comparison of anatase (TiO2)- and - Al2O3-supported MoS2 catalysts, J. Catal. 232, 161. [CrossRef] [Google Scholar]
  • Costa D.,Arrouvel C.,Breysse M.,Toulhoat H.,Raybaud P. (2007) Edge wetting effects of γ-Al2O3 and anatase-TiO2 supports by MoS2 and CoMoS active phases: A DFT study, J. Catal. 246, 325. [CrossRef] [Google Scholar]
  • Perdew J.P.,Wang Y. (1992) Accurate and simple analytic representation of the electron-gas correlation energy, Phys. Rev. B 45, 13244. [NASA ADS] [CrossRef] [Google Scholar]
  • Hohenberg P.,Kohn W. (1964) Inhomogeneous Electron, Gas, Phys. Rev. B 136, 864. [Google Scholar]
  • Kohn W.,Sham L.J. (1965) Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev. A 140, 1133. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  • Kresse G.,Furthmüller J. (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a planewave basis set, Comput. Mater. Sci. 6, 15. [Google Scholar]
  • Kresse G.,Joubert D. (1999) From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59, 1758. [Google Scholar]
  • Byskov L.S.,Nørskov J.K.,Clausen B.S.,Topsøe H. (1999) DFT Calculations of Unpromoted and Promoted MoS2-Based Hydrodesulfurization Catalysts, J. Catal. 187, 109. [CrossRef] [Google Scholar]
  • Sun M.,Nelson A.E.,Adjaye J. (2004) On the incorporation of nickel and cobalt into MoS2-edge structures, J. Catal. 226, 32. [CrossRef] [Google Scholar]
  • Krebs E.,Silvi B.,Raybaud P. (2008) Mixed sites and promoter segregation: A DFT study of the manifestation of Le Chatelier's principle for the Co(Ni)MoS active phase in reaction conditions, Catal. Today 130, 160. [CrossRef] [MathSciNet] [Google Scholar]
  • Okamoto Y.,Kawano M.,Kawabata T.,Kubota T.,Hiromitsu I. (2005) Structure of the Active Sites of Co-Mo Hydrodesulfurization Catalysts as Studied by Magnetic Susceptibility Measurement and NO Adsorption, J. Phys. Chem. B 109, 288. [CrossRef] [PubMed] [Google Scholar]
  • Lauritsen J.V.,Bollinger M.V.,Lægsgaard E.,Jacobsen K.W.,Nørskov J.K.,Clausen B.S.,Topsøe H.,Besenbacher F. (2004) Atomic-scale insight into structure and morphology changes of MoS2 nanoclusters in hydrotreating catalysts, J. Catal. 221, 510. [Google Scholar]
  • Topsøe H.,Clausen B.S.,Topsøe N.-Y.,Pedersen K.J.,Niemann W.,Müller A.,Bögge H.,Lengeler B. (1987) Inorganic cluster compounds as models for the structure of active sites in promoted hydrodesulphurization catalysts, J. Chem. Soc. Farad. T. 1 83, 2157. [CrossRef] [Google Scholar]
  • Bouwens S.M.A.M., Veen J.A.R. van, Koningsberger D.C., Beer V.H.J. de,Prins R. (1991) EXAFS determination of the structure of cobalt in carbon-supported cobalt and cobalt-molybdenum sulfide hydrodesulfurization catalysts, J. Phys. Chem. 95, 123. [CrossRef] [Google Scholar]
  • Niemann W.,Clausen B.S.,Topsoe H. (1990) X-Ray absorption studies of the Ni environment in Ni-Mo-S, Catal. Lett. 4, 355. [CrossRef] [Google Scholar]
  • Louwers S.P.A,Prins R. (1992) Ni EXAFS studies of the Ni-Mo-S structure in carbon-supported and alumina-supported Ni-Mo catalysts, J. Catal. 133, 94. [CrossRef] [Google Scholar]
  • Curie M.P. (1885) Sur la formation des cristaux et sur les constantes capillaires de leurs différentes faces, B. Soc. Min. France 8, 145. [Google Scholar]
  • Wulff G. (1901) Zur Frage der Geschwindigkeit des Wachstums und der Auflösung der Krystallflächen, Z. Kristallogr. 34, 449. [Google Scholar]
  • Gandubert A.,Krebs E.,Legens C.,Costa D.,Guillaume D.,Raybaud P. (2008) Optimal promoter edge decoration of CoMoS catalysts: A combined theoretical and experimental study, Catal. Today 130, 149. [CrossRef] [Google Scholar]
  • Gandubert A.,Legens C.,Guillaume D.,Rebours S.,Payen E. (2007) X-ray photoelectron spectroscopy surface quantification of sulfided CoMoP catalysts - Relation between activity and promoted sites - Part I: Influence of the Co/Mo ratio, Oil Gas Sci. Technol. - Rev. IFP 62, 79. [CrossRef] [EDP Sciences] [Google Scholar]
  • Travert A.,Dujardin C.,Maugé F.,Veilly E.,Cristol S.,Paul J.-F.,Payen E. (2006) CO Adsorption on CoMo and NiMo Sulfide Catalysts: A Combined IR and DFT Study, J. Phys. Chem. B 110, 1261-1270. [CrossRef] [PubMed] [Google Scholar]
  • Logadottir A.,Rod T.H.,Nørskov J.K.,Hammer B.,Dahl S.,Jacobsen C.J.H. (2001) The Bronsted-Evans-Polanyi Relation and the Volcano Plot for Ammonia Synthesis over Transition Metal Catalysts, J. Catal. 197, 229. [CrossRef] [Google Scholar]
  • Raybaud P.,Hafner J.,Kresse G.,Toulhoat H. (1997) Ab initio density functional studies of transition-metal sulphides: I. Crytal structure and cohesive properties, J. Phys. Cond. 9, 11085. [Google Scholar]
  • Toulhoat H.,Raybaud P.,Kasztelan S.,Kresse G.,Hafner J. (1999) Transition metals to sulfur binding energies relationship to catalytic activities in HDS: back to Sabatier with first principle calculations, Catal. Today 50, 629. [CrossRef] [Google Scholar]
  • Toulhoat H.,Raybaud P. (2003) Kinetic interpretation of catalytic activity patterns based on theoretical descriptors, J. Catal. 216, 63. [CrossRef] [Google Scholar]
  • Sabatier P. (1911) Hydrogénations et déshydrogénations par catalyse, Berichte der Deutschen Chem. Gesellschaft 44, 2001. [CrossRef] [Google Scholar]
  • Krebs E., Silvi B., Raybaud P. (2009) Topological analysis of the interactions between organic molecules and Co(Ni)MoS catalytic active phase, J. Comput. Theoretical Chem. DOI: 10.1021/ct800344r. [Google Scholar]
  • Miller J.T.,Reagan W.J.,Kaduk J.A.,Marshall C.L.,Kropf A.J. (2000) Selective Hydrodesulfurization of FCC Naphtha with Supported MoS2 Catalysts: The Role of Cobalt, J. Catal. 193, 123-131. [CrossRef] [Google Scholar]
  • Marchand K., Legens C., Guillaume D., Raybaud P. (2009) A rational comparison of the optimal promoter edge decoration of HDT Ni MoS vs CoMoS catalysts, Oil Gas Sci. Technol., this issue. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.