Dossier: Simulation Tools for Powertrain Design and Control
Open Access
Numéro
Oil & Gas Science and Technology - Rev. IFP
Volume 64, Numéro 3, May-June 2009
Dossier: Simulation Tools for Powertrain Design and Control
Page(s) 285 - 307
DOI https://doi.org/10.2516/ogst/2009023
Publié en ligne 19 mai 2009
  • Karnopp D.C., Margolis D.L., Rosenberg R.C. (1990) Systems dynamics: a unified approach, Second Edition, John Wiley & Sons, New-York. [Google Scholar]
  • Koltsakis G.C.,Konstandinis P.A.,Stamatelos A.M. (1997) Development and application range of mathematical models for 3-way catalytic converters, Appl. Catal. B: Environ. 12, 161-191. [CrossRef] [Google Scholar]
  • Depcik C.,Assanis D. (2003) One-dimensional automotive catalyst modeling, Prog. Energ. Combust. 31, 308-369. [CrossRef] [Google Scholar]
  • Xu L., Graham G., Mc Cabe R., Hoard J., Yang J. (2008) The Feasibility of an Alumina-Based Lean NOx Trap (LNT) for Diesel and HCCI Applications, SAE 2008-01-0451. [Google Scholar]
  • Kim Y., Sun J., Kolmanovsky I., Koncsol J. (2003) A phenomenological control oriented lean nox trap model, SAE 2003-01-1164. [Google Scholar]
  • Zheng H.,Keith J.M. (2007) Averaging Theory for Diesel Particulate Filter Regeneration, AIChe 53, 5. [CrossRef] [Google Scholar]
  • Schär C.M., Onder C.H., Geering H.P. (2004) Control-oriented model of an SCR catalytic converter system, SAE 2004-01-0153. [Google Scholar]
  • Wurzenberger J.C., Peters B. (2003) Catalytic converters in a 1D cycle simulation code considering 3D behaviour, SAE 2003-01-1002. [Google Scholar]
  • Onorati A., Ferrari G., D'Errico G., Montenegro G. (2002) The prediction of 1D unsteady flows in the exhaust system of a S.I. engine including chemical reactions in the gas and solid phase, SAE 2002-01-0003. [Google Scholar]
  • Tang W., Wahiduzzaman S., Wenzel S., Leonard A., Morel T. (2008) Development of a Quasi-Steady-Approach-Based Simulation Tool for System-Level Exhaust Aftertreatment Modelling, SAE 2008-01-0866. [Google Scholar]
  • Güthenke A.,Chatterjee D.,Weibel M.,Krutzsh B.,Koci P.,Marek M.,Nova I.,Tronconi E. (2008) Current status of modeling lean exhaust gas aftertreatment catalysts, Adv. Chem. Eng. 33, 103-211. [CrossRef] [Google Scholar]
  • Wanker R., Granter H., Bachler G., Rabenstein G., Ennemoser A., Tatschl R., Bollig M. (2002) New physical and chemicals models for the CFD simulation of exhaust gas lines: a generic approach, SAE 2002-01-0066. [Google Scholar]
  • Peters B.J., Wanker R.J., Münzer A., Wurzenberger J.C. (2004) Integrated 1D to 3D simulation workflow of exhaust aftertreatment devices, SAE 2004-01-1132. [Google Scholar]
  • Konstandopoulos A.G., Kostoglou M., Housiada P., Vlachos N., Zarvalis D. (2003) Multichannel simulation of soot oxidation in diesel particulate filters, SAE 2003-01-0839. [Google Scholar]
  • Wurzenberger J.C., Wanker R. (2005) Multi-scale SCR Modelling, 1D Kinetic Analysis and 3D System Simulation, SAE 2005-01-0948. [Google Scholar]
  • Millet C.N., Benramdhane S. (2008) A 3WCC Global Kinetic Model: A Calibration Method Using Laboratory Scale and Engine Test Bench Experiments, SAE 2008-01-0453. [Google Scholar]
  • Voltz S.,Morgan C.,Liederman D.,Jacob S. (1973) Kinetic Study of Carbon Monoxide and Propylene Oxidation on Platinum Catalysts, Ind. Eng. Chem. Prod. Res. Dev. 12, 294. [CrossRef] [Google Scholar]
  • Epling W.S., Campbell L.E., Yezeretz A., Currier N.W., ParksII J.E. (2004) Overview of the Fundamental Reactions and Degradation Mechanisms of NOx Storage/Reduction Catalysts, Catal. Rev. 46, 163-245. [CrossRef] [Google Scholar]
  • Chedotal R. (2007) Modelisation du catalyseur 4 voies, PhD Thesis, Pierre & Marie Curie University, 2007 [Google Scholar]
  • Olsson L.,Blint R.J.,Fridell E. (2005) Global Kinetic Model for Lean NOx Traps, Ind. Eng. Chem. Res. 44, 3021-3032. [CrossRef] [Google Scholar]
  • Nova I.,Lietti L.,Tronconi E.,Forzatti P. (2000) Dynamics of SCR reaction over a TiO2-supported vanadia-tungsta commercial catalyst, Catal. Today 60, 73-82. [CrossRef] [Google Scholar]
  • Ciardelli C.,Nova I.,Tronconi E.,Chatterjee D.,Bandl-Konrad B.,Weibel M.,Krutzsch B. (2007) Reactivity of NO/NO2-NH3 SCR system for Diesel exhaust aftertreatment: Identification of the raction network as a function of temperature and NO2 feed content, Appl. Catal. B: Environ. 70, 80-90. [CrossRef] [Google Scholar]
  • Konstandopoulos A.G., Kostoglou M., Skaperdas E., Papaionnou E., Zarvalis D., Kladopoulou E. (2000) Fundamental studies of diesel particulate filters: Transient loading, regeneration and aging, SAE 2000-01-1016. [Google Scholar]
  • Menegazzi P., Albrecht A., Millet C.N., Aubret P., Thomas V. (2006) A Simulation Tool for Vehicle Emissions, Consumption and Performance AnalysisFormula Applications to DPF Modelling and DID Turbocharger Engine Control Design, SAE 2006-01-3004. [Google Scholar]
  • Mauviot G., Le Berr F., Creff Y., Perretti F., Albrecht A. (2008) A virtual DOC-DPF after-treatment system for control design, Proc. of Diesel Engine After Treatment Conference of SIA, Paris. [Google Scholar]
  • Lepreux O., Creff Y., Petit N. (2008) Motion Planning for a Diesel Oxidation Catalyst Outlet Temperature, Proc. of the American Control Conference 2008, Seattle, USA. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.