Dossier: Simulation Tools for Powertrain Design and Control
Open Access
Numéro
Oil & Gas Science and Technology - Rev. IFP
Volume 64, Numéro 3, May-June 2009
Dossier: Simulation Tools for Powertrain Design and Control
Page(s) 259 - 284
DOI https://doi.org/10.2516/ogst/2008051
Publié en ligne 9 juin 2009
  • Lafossas F.A., Marbaix M., Menegazzi P. (2007) Development and application of a 0D D.I. Diesel combustion model for emissions prediction, SAE Technical Paper No. 2007-01-1841. [Google Scholar]
  • Albrecht A., Corde G., Knop V., Boie H., Castagne M. (2005) 1D simulation of turbocharged gasoline direct injection engine for transient strategy optimization, SAE Technical Paper No. 2005-01-0693. [Google Scholar]
  • Albrecht A., Chauvin J., Lafossas F.A., Potteau S., Corde G. (2006) Development of highly premixed combustion Diesel engine model: from simulation to control design. SAE Technical Paper No. 2006-01-1072. [Google Scholar]
  • Tao F., Liu Y., Rempelewert H., Foster D.E., Reitz R.D. (2005) Modeling the effects of EGR and injection pressure on the soot formation in a High-Speed Direct-Injection (HSDI) Diesel engine using a multi-step phenomenological soot model, SAE Technical Paper No. 2005-01-0121. [Google Scholar]
  • Vibe I.I. (1970) Brennverlauf und Kreisprozess von Verbrennungsmotoren, VEB Verlag Technik. [Google Scholar]
  • Heywood J.B. (1988) Combustion in Compression-Ignition engines, in Internal combustion engine fundamentals, McGraw-Hill, New York. [Google Scholar]
  • Cesario N., Muscio C., Farina M., Amato P., Lavorgna M. (2004) Modelling the rate of heat release in common rail Diesel engines: a soft computing approach, SAE Technical Paper No. 2004-01-2967. [Google Scholar]
  • Arsie I., Di Genova F., Pianese C., Rizzo G., Sorrentino M., Caraceni A., Cioffi P., Flauti G. (2003) A single-zone model for combustion and NOx simulation in common-rail multi-jet Diesel engines, SAE Technical Paper No. 2003-01-79. [Google Scholar]
  • Hiroyasu H.,Kadota T.,Arai M. (1983) Development and use of a spray combustion modeling to predict Diesel engine efficiency and pollutant emissions, Bull. JSME 26, 214, 569-583. [CrossRef] [Google Scholar]
  • Asay R.J., Svensson K.I., Tree D.R. (2004) An empirical, mixing-limited, zero-dimensional model for Diesel combustion, SAE Technical Paper No. 2004-01-0924. [Google Scholar]
  • Dec J.E. (1997) A conceptual model of DI Diesel combustion based on laser-sheet imaging, SAE Technical Paper No. 970873. [Google Scholar]
  • Mauviot G., Albrecht A., Poinsot T. (2006) A new 0D approach for Diesel combustion modeling coupling probability density function with complex chemistry, SAE Technical Paper No. 2006-01-3332. [Google Scholar]
  • Mauviot G. (2007) Développement d'une modélisation phénoménologique de chambres de combustion de moteurs à piston par réduction de modèle physique 3-D dans la perspective d'une intégration dans un outil de simulation système, PhD Thesis, UPMC. [Google Scholar]
  • Barba C.,Burkhardt C.,Boulouchos K.,Bargende M. (1999) An empirical model for precalculating the combustion rate of the Common Rail Diesel engine for passenger cars, Motortechnische Z. 60, 4, 262-270. [CrossRef] [Google Scholar]
  • Barba C., Burkhardt C., Boulouchos K., Bargende M. (2000) A phenomenological combustion model for heat release rate prediction in high speed DI Diesel engines with common-rail injection, SAE Technical Paper No. 2000-01-2933. [Google Scholar]
  • Chmela F., Orthaber G. (1999) Rate of heat release prediction for direct injection Diesel engines based on purely mixing controlled combustion, SAE Technical Paper No. 1999-01-0186. [Google Scholar]
  • Chmela F., Engelmayer M., Pirker G., Wimmer A. (2004) Prediction of turbulence controlled combustion in Diesel engines, THIESEL conference on thermo and fluid dynamic processes in Diesel engines, Valence - Spain, 2004. [Google Scholar]
  • Schihl P., Tasdemir J., Schwarz E., Bryzik W. (2002) Development of a zero-dimensional heat release model for application to small bore Diesel engines, SAE Technical Paper No. 2002-01-0073. [Google Scholar]
  • Kouremenos D.A., Rakopoulos C.D., Hountalas D.T. (1997) Multi-zone combustion modelling for the prediction of pollutants emissions and performance of DI Diesel engines, SAE Technical Paper No. 970635. [Google Scholar]
  • Jaine T. (2004) Simulation zérodimensionnelle de la combustion dans un moteur Diesel à Injection Directe, PhD Thesis, Université d'Orléans. [Google Scholar]
  • Kong S.C., Ayoub N., Reitz D. (1992) Modeling combustion in compression ignition homogeneous charge engine. SAE Technical Paper No. 920512. [Google Scholar]
  • Kong S.C., Marriot C.D., Reitz C.D., Christensen M. (2001) Modeling and experiments of HCCI engine combustion using detailed chemical kinetics with multidimensional CFD, SAE Technical Paper No. 2001-01-1026. [Google Scholar]
  • Kong S.C., Han Z., Reitz D. (2002) The development and application of a diesel ignition and combustion model for multidimensional engine simulation, SAE Technical Paper No. 950278. [Google Scholar]
  • Kong S.C., Marriot C.D., Rutland C.J., Reitz D. (2002) Experiments and CFD modeling of direct injection gasoline HCCI engine combustion, SAE Technical Paper No. 2002-01-1925. [Google Scholar]
  • Patel A., Kong S.C., Reitz R.D. (2004) Development and validation of a reduced reaction mechanism for HCCI engine simulation, SAE Technical Paper No. 2004-01-0558. [Google Scholar]
  • Nishida K., Hiroyasu H. (1989) Simplified three-dimensional modeling of mixture formation and combustion in a Diesel engine, SAE Technical Paper No. 890269. [Google Scholar]
  • Hasse C., Barths H., Peters N. (1999) Modeling the effects of split-injections in Diesel engines using representative interactive flamelets, SAE Technical Paper No. 1999-01-3574. [Google Scholar]
  • Hasse C., Bikas G., Peters N. (2000) Modeling diesel combustion using the eulerian particle flamelet model (epfm), SAE Technical Paper No. 2000-01-2934. [Google Scholar]
  • Barths H.,Pitsch H.,Peters N. (1999) 3D simulation of DI diesel combustion and pollutant formation using a twocomponent reference fuel, Oil Gas Sci. Technol. 54, 2, 233-244. [CrossRef] [EDP Sciences] [Google Scholar]
  • Michel J.B.,Colin O.,Veynante D. (2008) Modeling ignition and chemical structure of partially premixed turbulent flames using tabulated chemistry, Combust. Flame 152, 1-2, 80-99. [CrossRef] [Google Scholar]
  • Peters N., Rogg B. (1993) Reduced kinetic mechanisms for applications in combustion systems, Springer Verlag, Heidelberg. [Google Scholar]
  • Peters N. (2000) Nonpremixed turbulent combustion, in Turbulent combustion, Cambridge University Press, Cambridge. [Google Scholar]
  • Colin O.,Benkenida A.,Angelberger C. (2003) 3D Modeling of Mixing, ignition and combustion phenomena in highly stratified gasoline engine, Oil Gas Sci. Technol. 58, 1, 47-52. [Google Scholar]
  • Colin O.,Benkenida A. (2004) The 3-zones extended coherent flame model (ECFM3Z) for computing premixed/diffusion combustion, Oil Gas Sci. Technol. 59, 6, 593-609. [Google Scholar]
  • Wang Z., Wang J., Shuai S. (2004) Numerical simulation of HCCI engine with multistage gasoline Direct Injection using 3d-cfd with detailed chemistry, SAE Technical Paper No. 2004-01-0563. [Google Scholar]
  • Wang Z., Shuai S., Wang J., Tian G., An X. (2006) Modeling of HCCI combustion from 0D to 3D, SAE Technical Paper No. 2006-01-1364. [Google Scholar]
  • Knop V.,Jay S. (2006) Latest developments in gasoline Auto-Ignition modelling applied to an optical CAITM engine, Oil Gas Sci. Technol. 61, 1, 121-137. [CrossRef] [EDP Sciences] [Google Scholar]
  • Pires-da-Cruz A.,Baritaud T.,Poinsot T.J. (2001) Self-ignition and combustion modeling of initially nonpremixed turbulent systems, Combust. Flame 124, 1-2, 65-81. [CrossRef] [Google Scholar]
  • Bruneaux G. (2001) Liquid and vapor spray structure in high pressure Common Rail Diesel injector, Atomization Spray. 11, 5, 533-556. [CrossRef] [Google Scholar]
  • Bruneaux G., Augé M., Lemenand C. (2004) A study of Combustion structure in high pressure single hole Common Rail Direct Diesel Injection using laser induced fluorescence of radicals, COMODIA Congress, Yokohama - Japan, 2004. [Google Scholar]
  • Bruneaux G. (2005) Mixing process in high pressure Diesel jets by normalized laser induced exciplex fluorescence. Part I: free jet, SAE Technical Paper No. 2005-01-2100. [Google Scholar]
  • Verhoeven D., Vanhemelryck J.-L., Baritaud T. (1998) Macroscopic and ignition characteristics of high-pressure sprays of single-component fuels, SAE Technical Paper No. 981069. [Google Scholar]
  • Hiroyasu H., AraiM. (1990) Structures of fuel sprays in Diesel engines, SAE Technical Paper No. 900475. [Google Scholar]
  • Jaine T., Benkenida A., Menegazzi P., Higelin P. (2003) Zero dimensional computation of Diesel spray - comparison with experiments and 3D model, 6th International Conference on Engines for Automobile, Capri - Italy, 2003. [Google Scholar]
  • Subramanian G. (2005) Modélisation de l'auto-inflammation : analyse des effets de la dilution par les gaz brûlés et des interactions avec la turbulence dédiée aux moteurs Diesel à charge homogène, PhD Thesis, INSA Rouen. [Google Scholar]
  • Pope S.B. (1985) PDF methods for turbulent reactive flows, Prog. Energ. Combust. 19, 11, 119-192. [Google Scholar]
  • Gicquel O.,Darabiha N.,Thévenin D. (2000) Laminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion, Proc. Combust. Inst. 28, 1901-1908. [CrossRef] [Google Scholar]
  • Veynante D.,Vervisch L. (2002) Turbulent combustion modeling, Prog. Energ. Combust. 28, 3, 193-266. [Google Scholar]
  • Lefebvre A.H. (1989) Drop evaporation, in Atomization and sprays, Hemisphere Publishing Corporation, United States of America. [Google Scholar]
  • Reid R.C., Prausnitz J.M., Poling B.E. (1987) The properties of gases & liquids, McGraw-Hill, United States of America. [Google Scholar]
  • Ghassemi H.,Baek S.W.,Khan S.Q. (2006) Experimental study on binary droplet evaporation at elevated pressures and temperatures, Combust. Sci. Technol. 178, 6, 1031-1053. [CrossRef] [Google Scholar]
  • Siebers D.L. (1998) Liquid-phase fuel penetration in Diesel sprays, SAE Technical Paper No. 980809. [Google Scholar]
  • Siebers D. (1999) Scaling liquid-phase fuel penetration in diesel sprays based on mixing-limited vaporization, SAE Technical Paper No. 1999-01-0528. [Google Scholar]
  • Naber J.D., Siebers D. (1996) Effects of gas density and vaporization on penetration and dispersion of diesel sprays, SAE Technical Paper No. 960034. [Google Scholar]
  • Desantes J.M.,Payri R.,Salvador F.J.,Gil A. (2005) Development and validation of a theoretical model for diesel spray penetration, Fuel 85, 7-8, 910-917. [CrossRef] [Google Scholar]
  • Girimaji S.S. (1991) Assumed Formula -PDF Model for Turbulent Mixing: Validation and Extension to Multiple Scalar Mixing, Combust. Sci. Technol. 78, 177-196. [CrossRef] [Google Scholar]
  • Kuo K.K. (2005) Gaseous diffusion flames and combustion of a single liquid fuel droplet, in Principles of combustion, Wiley J. (ed.), John Wiley & Sons, Hoboken - New Jersey. [Google Scholar]
  • Givler S.D.,Abraham J. (1996) Supercritical droplet vaporization and combustion studies, Prog. Energ. Combust. 22, 4, 1-28. [CrossRef] [Google Scholar]
  • Sirignano W.A. (2004) Droplet behavior at near-critical, transcritical, and supercritical conditions, in Fluid dynamics and transport of droplets and sprays, Cambridge University Press, Irvine. [Google Scholar]
  • Neely G.D., Sasaky S., Huang Y., Leet J.A., Stewart D.W. (2005) New Diesel emission control strategies to meet US Tier 2 emissions regulations, SAE Technical Paper No. 2005-01-1091. [Google Scholar]
  • Kee R.J., Rupley F.M., Miller J.A. (1989) CHEMKIN-II: a fortran chemical kinetics package for the analysis of gasphase chemical kinetics, Sandia National Laboratories report No. SNL-89-8009. [Google Scholar]
  • Curran H.J.,Gaffuri P.,Pitz W.J.,Westbrook C.K. (1998) A comprehensive modeling study of n-heptane oxidation, Combust. Flame 114, 1-2, 149-177. [CrossRef] [Google Scholar]
  • Maas U.,Pope S.B. (1992) Implementation of simplified chemical kinetics based on low-dimensional manifolds, Proc. Combust. Inst. 24, 1, 103-112. [CrossRef] [Google Scholar]
  • Maas U.,Pope S.B. (1992) Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space, Combust. Flame 88, 3-4, 239-264. [CrossRef] [Google Scholar]
  • Embouazza M. (2005) Étude de l'auto-allumage par réduction des schémas cinétiques chimiques. Application à la combustion homogène Diesel, PhD Thesis, École Centrale de Paris. [Google Scholar]
  • Gauthier B.M.,Davidson D.F.,Hanson R.K. (2004) Shock tube determination of ignition delay times in full-blend and surrogate fuel mixtures, Combust. Flame 139, 4, 300-311. [CrossRef] [Google Scholar]
  • Sihling K., Woschni G. (1979) Experimental investigation of the instantaneous heat transfer in the cylinder of a high speed Diesel engine, SAE Technical Paper No. 790833. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.