Open Access
Numéro
Oil & Gas Science and Technology - Rev. IFP
Volume 61, Numéro 5, September-October 2006
Page(s) 647 - 659
DOI https://doi.org/10.2516/ogst:2006004
Publié en ligne 1 janvier 2007
  • Patel, M.H. et al. (1995) Review of flexible riser modelling and analysis techniques, Eng. Struct., 17, 293-304. [Google Scholar]
  • Park, H.I. et al. (2002) A finite element method for dynamic analysis of long slender marine structures under combined parametric and forcing excitations, Ocean Eng., 29, 1313-1325. [Google Scholar]
  • Hong, Y.P. and Koterayama, W. (2003) An analytical study on a riser and the validation by forced oscillation experiments, Proceedings of the 3rd International Conference on Hydroelasticity in Marine Technology, Oxford, UK, 37-44. [Google Scholar]
  • Chatjigeorgiou, I.K., Georgakopoulos, C.G. and Mavrakos, S.A. (2003) Non-linear dynamics of vertical risers under parametric and lateral excitation and effect of internal flow, Proceedings of the 3rd International Conference on Hydroelasticity in Marine Technology, Oxford, UK, 51-61. [Google Scholar]
  • Bowman, J. and Howells, H. (1998) Developments in riser vortex induced vibration analysis, 2H Offshore Engineering Limited Working Advanced in Riser Technology, Aberdeen. [Google Scholar]
  • Howells, H. and Lim, F. (1998) Deep water riser VIV monitoring, 2H Offshore Engineering Limited Working Advanced in Riser Technology, Aberdeen. [Google Scholar]
  • Khalak, A. and Williamson, C.H.K. (1999) Motion, forces, and mode transitions in vortex induced vibration at low mass damping, J. Fluids Struct., 13, 813-851. [Google Scholar]
  • Goverdhan, R. and Williamson, C.H.K. (2000) Modes of vortex formation and frequencies responses of a freely vibrating cylinder, J. Fluid Mech, 420, 85-130. [Google Scholar]
  • Bell, T.A., Militzer, J. and Ham, F. (2002) Simulations of vortexinduced vibration of long cylinders with two degrees of freedom, Stanford University, Center for Marine Vessel Development and Research, CFDnet – computational fluid dynamics on the Internet. [Google Scholar]
  • Yamamoto, C.T.,Meneghin, J.R.,Saltara, F.,Fregonesi, R.A. and Ferrari, J.A. Jr. (2004) Numerical simulation of vortex-induced vibration on flexible cylinders, J. Fluids Struct., 19, 467-489. [Google Scholar]
  • Sparks, C.P. (2002). Transverse modal vibrations of vertical tensioned risers, Oil Gas Sci. Technol., 57, 71-86. [Google Scholar]
  • Timoshenko, S. (1955) Vibration Problems in Engineering, D. Van Nostrand Company. [Google Scholar]
  • Clough, R.W. and Penzien, J. (1975) Dynamics of Structures, McGraw-Hill Book Company. [Google Scholar]
  • Kreyszig, E. (1993) Advanced Engineering Mathematics, John Wiley & Sons, Inc. [Google Scholar]
  • Abramowitz, M. and Stegun, I.A. (1968) Handbook of Mathematical Functions, Dover Publications, Inc. [Google Scholar]
  • Bronshtejn, I.N. and Semendjajev, K.A. (1975) Mathematical Handbook, Tehni¡cka knjiga, Zagreb (in Croatian). [Google Scholar]
  • Zienkiewicz, O.C. (1971) The Finite Element Method in Engineering Science, McGraw-Hill. [Google Scholar]
  • Bathe, K.J. (1996) Finite Element Procedures, Prentice Hall. [Google Scholar]
  • Parunov, J. (1996) Dynamic analysis of tower buoy, Master's Thesis, University of Zagreb, Zagreb (in Croatian). [Google Scholar]
  • Senjanovi'c, I. (1998) Finite Element Method in Ship Structures Analyses, University of Zagreb, Zagreb (in Croatian). [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.