Open Access
Oil & Gas Science and Technology - Rev. IFP
Volume 61, Numéro 5, September-October 2006
Page(s) 661 - 676
Publié en ligne 1 janvier 2007
  • Gros, V., Martin, D., Poisson, N., Kanakidou, M., Bonsang, B., LeGuern, F. and Demont, D. (1998) Ozone observation and C2-C5 hydrocarbon observations in the marine boundary layer between 45Formula S and 77Formula S. Tellus B, 50, 430-448. [CrossRef] [Google Scholar]
  • Day, J.A. (1964) Production of droplets and salt nuclei by the bursting of air bubbles films. Q. J. Roy. Meteor. Soc., 90, 72-78. [CrossRef] [Google Scholar]
  • McIntyre, F. (1968) Bubbles. A boundary-layer for micron thick sample of liquid surface. J. Chem. Phys., 72, 589-592. [CrossRef] [Google Scholar]
  • Wu, J. (1979) Sea spray in the atmospheric surface layer: review and analysis of laboratory and oceanic results, J. Geophys. Res., 84, 1638-1704. [Google Scholar]
  • Sadiki, M., Quentel, F., Elléouet, C., Huruguen, J.-P., Jestin, J., Andrieux, D., Olier, R. and Privat, M. (2003) Coadsorption at the air/water interface likely explains some pollutants transfer to the atmosphere: benzene and lead case. Atmos. Environ., 37, 3551-3559. [Google Scholar]
  • Sadiki, M.,Quentel, F.,Elléouet, C.,Olier, R. and Privat, M. (2005) Coadsorption at the air/water interface as source of pollutant transfer to atmosphere. Case study of benzene/cyclohexane traces and lead, Atmos. Environ., 39, 2661-2672. [CrossRef] [Google Scholar]
  • Botelho, C.M.S.,Boaventure, R.A.R. and Gonçalves, M.L.S.S. (2002) Interactions of Pb(II) with particles of a polluted river. Anal. Chim. Acta, 465, 73-85. [CrossRef] [Google Scholar]
  • Adamson, A.W., Physical chemistry of surfaces, Wiley-Interscience, New-York (1990). [Google Scholar]
  • Cutting, C.L. and Jones, D.C. (1955) Adsorption of insoluble vapours on water surfaces. J. Chem. Soc., 4067-4075. [Google Scholar]
  • Shahidzadeh, N.,Bonn, D.,Ragil, K.,Broseta, D. and Meunier, J. (1998) A sequence of two wetting transitions by tuning the Hamaker constant, Phys. Rev. Lett., 80, 3992-3996. [CrossRef] [Google Scholar]
  • Bertrand, E.,Hobbs, H.,Broseta, D.,Indekeu, J.,Bonn, D. and Meunier, J. (2000) First-order and critical wetting of alkanes on water. Phys. Rev. Lett., 85, 1282-1285. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  • Bertrand, E.,Bonn, D.,Broseta, D. and Meunier, J. (1999) Wetting of Hydrocarbon mixtures on water under varying pressure or composition. J. Petrol. Sci. Eng., 24, 221-230. [CrossRef] [Google Scholar]
  • Wan, J. and Tokunaga, T.K. (1998). Measuring partition coefficients of colloids at air-water interfaces. Env. Sci. Technol., 32, 3293-3298. [CrossRef] [Google Scholar]
  • Cahn, J.W. (1977) Critical point wetting. J. Chem. Phys., 66, 3667-3672. [CrossRef] [Google Scholar]
  • Indekeu, J.,Ragil, K.,Bonn, D.,Broseta, D. and Meunier, J. (1999). Wetting of alkanes on water from a Cahn-type theory. J. Stat. Phys., 95, 1009-1043. [CrossRef] [Google Scholar]
  • Rowlinson, J.S. and Widom, B. (1982) Molecular theory of capillarity. Clarendon, Oxford. [Google Scholar]
  • Yoffe, A. and Heymann, E. (1943). Note on Antonoff's rule. J. Chem. Phys., 47, 409-410. [CrossRef] [Google Scholar]
  • Takii, T. and Mori, Y.H. (1993). Spreading coefficients of aliphatic hydrocarbons on water. J. Colloid Interf. Sci., 161, 31-37. [CrossRef] [Google Scholar]
  • Ross, S. and Becher, P. (1992). J. Colloid Interf. Sci., 149, 575-579. [Google Scholar]
  • Lemlich, R. (1972) Adsorptive bubble methods, in Recent developments in separation science, vol. 1, 113-127, Li, N.N., (Ed.), The Chemical Rubber Co., Cleveland OH. [Google Scholar]
  • Yaron, B., Calvet, R. and Prost, R. (1996) Soil pollution. Processes and dynamics. Springer, Berlin. [Google Scholar]
  • Carslow, H.S. and Jaeger, J.C. (1959) Conduction of heat in Solids, 2nd ed. Oxford Clarendon Press, Oxford. [Google Scholar]
  • Vogt, F.,Tacke, M.,Jakusch, M. and Mizaikoff, B. (2000) A UV spectroscopic method for monitoring aromatic hydrocarbons dissolved in water. Anal. Chim. Acta, 422, 187-198. [CrossRef] [MathSciNet] [Google Scholar]
  • Norme française NF ISO 11423-1. Qualité de l'eau. Détermination du benzène et de certains dérivés benzéniques par chromatographie en phase gazeuse de l'espace de tête. [Google Scholar]
  • LovricFormula , M. (2002) Stripping voltammetry in Electroanalytical Methods: Guide to experiments and applications, Scholz, F. (Ed.) Springer-Verlag, New York, 191-211. [Google Scholar]
  • Mc Auliffe, C. (1966) Solubility in water of paraffin, cycloparaffin, olefin, acetylene, cycloolefin, and aromatic hydrocarbons. J. Phys. Chem., 70, 1267-1275. [CrossRef] [Google Scholar]
  • Mc Auliffe, C. (1969) Solubility in water of normal C9 and C10 alkane hydrocarbons. Science, 163, 478-479. [CrossRef] [PubMed] [Google Scholar]
  • Mc Auliffe, C. (1963) Solubility in water of C1-C9 hydrocarbons. Nature, 200, 1092-1093. [CrossRef] [Google Scholar]
  • Ramos-Gomez, F. and Widom, B. (1980) Noncritical interface near a critical end point II, Physica A, 104, 595-620. [CrossRef] [Google Scholar]
  • Tavan, P. and Widom, B. (1983) Van der Waals model for the surface tension of liquid 4He near the lambda point, Phys. Rev. B, 27, 180-193. [Google Scholar]
  • Widom, B. (1985) Phase equilibrium and interfacial structure. Chem. Soc. Rev., 14, 121-140. [CrossRef] [Google Scholar]
  • Nagarajan, N.,Webb, W.W. and Widom, B. (1982) Surface tension of two-component liquid mixture near its critical solution point, J. Chem. Phys., 77, 5771-5783. [CrossRef] [Google Scholar]
  • Amara, M.,Privat, M.,Bennes, R. and Tronel-Peyroz, E. (1991) Experimental study of the critical laws for the surface tensions along the critical isochore, and the coexistence curve and for the liquid-liquid interface. Water-2,5 lutidine system, Europhys. Lett., 16, 153-158. [CrossRef] [Google Scholar]
  • Karad, S.,Amara, M.,Laouenan, A.,Tronel-Peyroz, E.,Bennes, R. and Privat, M. (1994) Universal amplitude ratios of surface tensions near a critical point in a liquid binary system: water-2,5 lutidine, J. Chem. Phys., 100, 1498-1502. [CrossRef] [Google Scholar]
  • Massart, D.L., Vandeginste, B.G.M., Buydens, L.M.C., De Jong, S., Lewi, P.J. and Smeyers-Verbeke, J. (1997) Handbook of Chemometrics and Qualimetrics. Part A. Elsevier, Amsterdam, 310. [Google Scholar]
  • Hamaker, H.C. (1937) The London-Van der Waals attraction between spherical particles. Physica IV-10, 1058-1072. [Google Scholar]
  • Acharid, A.,Quentel, F.,Elleouet, C.,Olier, R. and Privat, M. (2006) Coadsorption of carbofuran and lead at the air/water interface. Possible occurrence of non-volatile pollutant co-transfer to the atmosphere. Chemosphere, 62, 989-997. [CrossRef] [PubMed] [Google Scholar]
  • Aveyard, R.,Saleem, S.M. and Heselden, R. (1977) Desorption of electrolytes at liquid-vapour and liquid-liquid interfaces. J. Chem. Soc. Faraday T., 73, 84-94. [CrossRef] [Google Scholar]
  • Onsager, L. and Samaras, N.N.T. (1934) The surface tension of Debye-Hückel electrolytes. J. Chem. Phys., 2, 528-536. [CrossRef] [Google Scholar]
  • Wagner, C. (1924) Die Oberflächenspannung verdünnter elektrolytlösungen. Physik Z., 25, 474-477. [Google Scholar]
  • Karraker, K.A. and Radke, C.J. (2002) Disjoining pressure, zeta potential, and surface tension of aqueous non-ionic surfactants/electrolyte solutions: theory and comparison with experiments. Adv. Colloid Interface Sci., 96, 231-264. [CrossRef] [PubMed] [Google Scholar]
  • Jungwirth, P. and Tobias, D.J. (2001) Molecular structure of salt solutions: a new view of the interface with implication for heterogeneous atmospheric chemistry. J. Phys. Chem. B, 105, 10468-10472. [CrossRef] [Google Scholar]
  • ASTDR 1993. Toxicological profile for lead. Final Report of the Agency for Toxic Substances and Disease Registry. Public Health Service, US Department of Health and Human Service (April, 1993). [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.