- Somorjai, G.A. (2004) On the Move, Nature, 430, 730. [CrossRef] [PubMed] [Google Scholar]
- Friedel, J. (1978) Physics of Metals, Cambridge University Press, Cambridge. [Google Scholar]
- Desjonqueres, M.C. and Spanjaard, D. (1998) Concepts in Surface Physics, Springer-Verlag, Berlin. [Google Scholar]
- Sinfelt, J. (2002) Role of surface science in catalysis. Surf. Sci., 500, 923. [Google Scholar]
- Zaera, F. (2001) Probing catalytic reactions at surfaces, Prog. Surf. Sci., 69, 1. [CrossRef] [Google Scholar]
- Thomas, J.M. and Thomas, W.J., (1997) Principles and Practice of Heterogeneous Catalysis, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. [Google Scholar]
- Iwasawa, Y. (2003) In situ characterization of supported metal catalysts and model surfaces by time-resolved and three-dimensional XAFS techniques, J. Catal., 216, 165. [CrossRef] [Google Scholar]
- Somorjai, G.A. and McCrea, K. (2001) Roadmap for catalysis science in the 21st century: a personal view of building the future on past and present accomplishments. Appl. Catal. A-Gen., 222, 3. [Google Scholar]
- Gates, B.C. (2000) Supported nanostructured catalysts: Metal complexes and metal clusters. J. Mol. Catal. A-Chem., 163, 55. [CrossRef] [Google Scholar]
- Russell, A.E. and Rose, A. (2004) X-ray absorption spectroscopy of low temperature fuel cell catalysts, Chem. Rev., 104, 4613. [CrossRef] [PubMed] [Google Scholar]
- Pârvulescu, V.I.,Grange, P. and Delmon, B. (1998) Catalytic removal of NO. Catal. Today, 46, 233. [CrossRef] [Google Scholar]
- Garin, F. (2001) Environmental catalysis, Appl. Catal. A-Gen., 222, 183. [Google Scholar]
- Dry, M.E. (1981) The Fischer-Tropsch Synthesis in Catalysis Sciences and Technology, Anderson, J.R. and Boudart, M., (Eds.) 1, Springer Verlag, Berlin, 159. [Google Scholar]
- Van Wechem, V.M.H. and Senden, M.M.G., (1994) Conversion of natural gas to transportation fuels via the Shell Middle Distillate Process, Stud. Surf. Sci. Catal., 81, 43. [Google Scholar]
- Bazin, D.,Mottet, C.,Tréglia, G. and Lynch, J. (2000) New trends in heterogeneous catalysis processes on metallic clusters from synchrotron radiation and theoretical studies, Appl. Surf. Sci. 164, 140. [Google Scholar]
- Bazin, D. (2002) Solid state concepts to understand catalysis using nanoscale metallic particles, Top. Catal., 18, 79. [Google Scholar]
- Bazin, D. (2003) Solid State Physics and Synchrotron Radiation Techniques to Understand Heterogeneous Catalysis in nanotechnology, Ed. G.A. Somorjai, S. Hermans, B. Zhou, Ed. kluwer. [Google Scholar]
- Ino, A. (1969) Stability of multiply-twinned particles J. Phys. Soc. Jpn, 27, 941. [Google Scholar]
- Wulff, G.V. (1901) Zur frage der Geschwindigkeit des Wachstums und der Auflosung der Krystalflachen, Z. Krystallogr., 34, 449. [Google Scholar]
- Pesant, L., Matta, J., Garin, F., Ledoux, M.J., Bernhardt, P., Pham, C. and Pham-Huu C. (2004) A high-performance Pt/-SiC catalyst for catalytic combustion of model carbon particles (CPs). Appl. Catal. A-Gen., 266, 21. [CrossRef] [MathSciNet] [Google Scholar]
- Nohair, B.,Especel, C.,Marécot, P.,Montassier, C.,Hoang, L.C., and Barbier, J. (2004) Selective hydrogenation of sunflower oil over supported precious metals. C. R. Acad. Sci. II C, 7, 113. [Google Scholar]
- Henry, C. (2000) Catalytic activity of supported nanometersized metal clusters, Appl. Surf. Sci., 164, 252. [CrossRef] [Google Scholar]
- Alvarado, P., Dorantes-Davila, J.L. and Pastor G.M. (1998) Magnetic properties of 3d transition-metal nanostructures: Cr and V clusters embedded in bulk Fe, Phys. Rev. B, 58, 12116. [CrossRef] [Google Scholar]
- Reddy, B.V.,Khanna, S.N. and Jena, P. (1999) Structure and magnetic ordering in Cr8 and Cr13 clusters, Phys. Rev. B 60, 15598. [CrossRef] [Google Scholar]
- Oda, T.,Pasquarello, A. and Car, R. (1998) Fully unconstrained approach to noncollinear magnetism: Application to small Fe clusters, Phys. Rev. Lett., 80, 3622. [CrossRef] [Google Scholar]
- Guirado-Lopez, R. (2001) Magnetic anisotropy of fcc transition-metal clusters: Role of surface relaxation, Phys. Rev. B, 63, 174420. [CrossRef] [Google Scholar]
- Calleja, M.,Rey, C.,Alemany, M.M.G.,Gallego, L.J.Ordejon, P.,Sanchez-Portal, D.,Artacho, E. and Soler, J.M. (1999) Self-consistent density-functional calculations of the geometries, electronic structures, and magnetic moments of Ni-Al clusters, Phys. Rev. B, 60, 2020. [CrossRef] [Google Scholar]
- Mottet, C.Tréglia, G. and Legrand, B. (1997) New magic numbers in metallic clusters: an unexpected metal dependence, Surf. Sci. Lett., 383, L719. [CrossRef] [Google Scholar]
- Guirado-Lopez, R.,Desjonqueres, M.C. and Spanjaard, D. (1999) Electronic and magnetic structure in 4d transition metal clusters, Appl. Surf. Sci., 144, 663. [CrossRef] [Google Scholar]
- Barreteau, C.,Spanjaard, D. and Desjonqueres, M.C. (1999) Electronic structure and energetics of transition metal surfaces and clusters from a new spd tight-binding method, Surf. Sci., 433, 751. [CrossRef] [Google Scholar]
- Guirado-Lopez, R.,Desjonqueres, M.C.,Spanjaard, D. and Aguilera-Granja, F. (1998) Electronic and geometrical effects on the magnetism of small RuN clusters, J. Magn. Magn. Mat., 186, 214. [CrossRef] [Google Scholar]
- Mottet, C.,Tréglia, G. and Legrand, B. (1996) Electronic structure of Pd cluster in the tight-binding approximation: influence of spd hybridization, Surf. Sci., 352, 675. [CrossRef] [Google Scholar]
- Khoutami, A. (1993) PhD, University of Paris XI. [Google Scholar]
- Car, R. and Parrinello, M. (1985) Unified Approach for Molecular Dynamics and Density-Functional Theory, Phys. Rev. Lett., 55, 2471. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
- Hall, B.D.,Flueli, M.,Monot, R. and Borel, J.P. (1991) Multiply twinned structures in unsupported ultrafine silver particles observed by electron diffraction, Phys. Rev. B, 43, 3906. [CrossRef] [Google Scholar]
- Pinto, A., Pennisi, A.R., Faraci, G., D'agostino, G.,Mobilio, S. and Boscherini, F. (1995) Evidence for truncated octahedral structures in supported gold clusters, Phys. Rev. B, 51, 5315. [CrossRef] [Google Scholar]
- Apai, G.,Hamilton, J.F.,Stohr, J. and Thompson, A. (1979) Exafs of small Cu and Ni clusters: Binding-energy and bondlength changes with cluster size, Phys. Rev. Lett., 13, 165. [CrossRef] [Google Scholar]
- Moraweck, B.,Clugnet, G. and Renouprez, A.J. (1979) Contraction and relaxation of interatomic distances in small platinum particles from extended X-ray absorption fine structure (EXAFS) spectroscopy, Surf. Sci., 81, L631. [CrossRef] [Google Scholar]
- Vervish, W.,Mottet, C. and Goniakowski, J. (2002) Theoretical study of the atomic structure of Pd nanoclusters deposited on a MgO(100) surface, Phys. Rev. B, 65, 245411. [CrossRef] [Google Scholar]
- Mottet, C.,Goniakowski, J.,Baletto, F.,Ferrando, R. and Tréglia, G. (2004) Modeling free and supported metalic nanoclusters: Structure and dynamics, Phase Transit., 77, 101. [CrossRef] [Google Scholar]
- Lodziana, Z. and Nørskov, J.K. (2002) Interaction of Pd with steps on Al2O3 (0001), Surf. Sci., 518, L577. [CrossRef] [Google Scholar]
- Prevot, G. and Henry, C.R. (2002) Microkinetic modeling of the CO + NO reaction on Pd/MgO particle, J. Phys. Chem. B, 106, 12191. [CrossRef] [Google Scholar]
- Sayers, D.A.,Lytle, F.W. and Stern, E.A. (1970) Advances in X-ray Analysis, Ed. Plenum, New-York, 13, 1970. [Google Scholar]
- Bazin, D.,Sayers, D.,Rehr, J.,Mottet, C. (1997) Numerical simulation of the Pt LIII edge white line relative to nanometer scale clusters. J. Phys. Chem., 100, 5332. [Google Scholar]
- Bazin, D.,Rehr, J.J. (2003) Limits and advantages of X-ray absorption near edge structure for nanometer scale metallic clusters, J. Phys. Chem. B 107, 12398. [CrossRef] [Google Scholar]
- Bazin, D.,Lynch, J.,Ramos-Fernandez, M. (2003) Xas and Awaxs: Two basic tools in heterogeneous catalysis, Oil Gas Sci. Technol., 58, 683. [Google Scholar]
- Clausen, B.S.,Grabaek, L.,Topsoe, H.,Hansen, L.B.,Stoltze, P.,Norskov, J.K. and Nielsen, O.H. (1993) A new procedure for particle size determination by EXAFS based on molecular dynamics simulations, J. Catal., 141, 368. [CrossRef] [Google Scholar]
- Ramallo-López, J.M.,Requejo, F.G.,Craievich, A.F.,Wei, J.,Avalos-Borja, M. and Iglesia, E. (2005) Complementary methods for cluster size distribution measurements: supported platinum nanoclusters in methane reforming catalysts, J. Mol. Catal. A-Chem., 228, 299. [CrossRef] [Google Scholar]
- Womes, M., Cholley, T., Le Peltier, F., Morin, S., Didillon, B., and Szydlowski-Schildknecht, N. (2005) Study of the reaction mechanisms between Pt(acac)2 and alumina surface sites: Application to a new refilling technique for the controlled variation of the particle size of Pt/Al2O3 catalysts, Appl. Catal. A-Gen., In Press. [Google Scholar]
- Jacobs, G., Ghadiali, F., Pisanu, A., Borgna, A., Alvarez, W.E. and Resasco, D.E (1999) Characterization of the morphology of Pt clusters incorporated in a KL zeolite by vapor phase and incipient wetness impregnation. Influence of Pt particle morphology on aromatization activity and deactivation, Appl. Catal. A-Gen., 188, 79. [Google Scholar]
- Frenkel, A.I.,Hills, C.W., and Nuzzo, R.G. (2001) A view from the inside: Complexity in the Atomic Scale Ordering of Supported Metal Nanoparticles, J. Phys. Chem. B., 105, 12689. [CrossRef] [Google Scholar]
- Chao, K.J., and We, A.C. (2001) Characterization of heterogeneous catalysts by X-ray absorption spectroscopy, J. Electron Spectroscopy and Related Phenomena, 119, 175. [CrossRef] [Google Scholar]
- Stakheev, A.Y. and Kustov, L.M. (1999) Effects of the support on the morphology and electronic properties of supported metal clusters: modern concepts and progress in 1990s, Appl. Catal. A-Gen., 188, 3. [CrossRef] [Google Scholar]
- Bazin, D., Sayers, D., Rehr, J. (1997) Comparison between Xas, Awaxs, Asaxs & Dafs applied to nanometer scale metallic clusters, J. Phys. Chem., 101, 11040. [Google Scholar]
- Lynch, J. (2002), Development of structural characterisation tools for catalysts. Oil Gas Sci. Technol., 57, 281. [Google Scholar]
- Grunwaldt, J.D.,Caravati, M.,Hannemann, S. and Baiker, A. (2004) X-ray absorption spectroscopy under reaction conditions: suitability of different reaction cells for combined catalyst characterization and time-resolved studies, Phys. Chem. Chem. Phys., 6, 3037 [CrossRef] [Google Scholar]
- Shih, C.C. and Chang, J.R. (2005) Genesis and growth of platinum subnano-particles on activated-carbon characterized by X-ray absorption spectroscopy: effects of preparation conditions, Mater. Chem. Phys., 92, 89-97. [CrossRef] [Google Scholar]
- Yao, N.,Pinckney, C.,Lim, S.,Pak, C. and Haller, G.L. (2001) Synthesis and characterization of Pt/MCM-41 catalysts, Micropor. Mesopor. Mat., 44-45, 377. [CrossRef] [Google Scholar]
- Chen, Y.,Ciuparu, D.,Lim, S.,Yang, Y.,Haller, G.L. and Pfefferla, L. (2004) Synthesis of uniform diameter single-wall carbon nanotubes in Co-MCM-41: effects of the catalyst prereduction and nanotube growth temperatures, J. Catal., 225, 453. [CrossRef] [Google Scholar]
- Dou, D.,Liu, D.J.,Williamson, W.B.,Kharas, K.C. and Robota, H.J. (2001) Structure and chemical properties of Pt nitrate and application in three-way automotive emission catalysts, Appl. Catal. B-Environ., 30, 11. [CrossRef] [Google Scholar]
- Dal Santo, V., Dossi, C., Recchia, S., Colavita, P.E., Vlaic, G. and Psaro, R. (2002) Carbon tetrachloride hydrodechlorination with organometallics-based Pt and Pd catalysts on MgO, J. Mol. Catal. A-Chem., 182-183, 157. [Google Scholar]
- Benfield, R.E.,Grandjean, D.,Dore, J.C.,Esfahanian, H.,Wu, Z.,Kröll, M.,Geerkens, M. and Schmid, G. (2004) Structure of assemblies of metal nanowires in mesoporous alumina membranes studied by EXAFS, XANES, X-ray diffraction and SAXS, Faraday Discuss., 125, 327. [CrossRef] [PubMed] [Google Scholar]
- Yoshitake, H. and Iwasawa, Y. (1992) Electronic metal support interaction in platinum catalysts under deuterium-ethene reaction conditions and the microscopic nature of the active sites, J. Phys. Chem. B, 96, 1329. [CrossRef] [Google Scholar]
- Bazin, D.,Dexpert, H.,Guyot-Sionnest, N.S.,Bournonville, J.P. and Lynch, J. (1989) Exafs characterization of reforming catalysts: examples of recent applications, J. Chim. Phys., 7, 86. [Google Scholar]
- Asakura, K.,Chun, W.J.,Shirarai, M.,Tomishige, K. and Iwasawa, Y. (1997) In-situ polarization-dependent totalreflection fluorescence XAFS studies on the structure Transformation of Pt Clusters on Al2O3(0001), J. Phys. Chem. B, 101, 5549. [CrossRef] [Google Scholar]
- Yamauchi, R.,Gunji, I.,Endou, A.,Yin, X.,Kubo, M.,Chatterjee, A. and Miyamoto, A. (1998) Electronic and structural features of Pd3 cluster on MgO(100) surface cluster, Appl. Surf. Sci., 130, 572. [CrossRef] [Google Scholar]
- Lopez, N.,Illas, F. and Pacchioni, G. (1999) Electronic effects in the activation of supported metal clusters: Density functional theory. study of H2 dissociation on Cu/SiO2, J. Phys. Chem. B, 103, 1712. [CrossRef] [Google Scholar]
- Kantorovich, L.,Shluger, A.,Günster, J.,Stultz, J.,Krischok, S.,Goodman, D.W.,Stracke, P., and Kempter, V. (1999) Mg clusters on MgO surfaces: characterization by MIES and electronic structure ab initio calculations, Nucl. Instrum. Meth. B, 157, 162. [CrossRef] [Google Scholar]
- Montano, P.A., Schulzte, W., Tesche, B., Shenoy, G.K. and Morrison T.I. (1984) Exafs study of Ag particles isolated in solid argon, Phys. Rev., 30, 672. [CrossRef] [Google Scholar]
- Wang, Z.L.,Petroski, J.L.,Green, T.C. and El-Sayed, M.A. (1998) Shape transformation and surface melting of cubic and tetrahedral Platinum nanocrystals, J. Phys. Chem. B, 32, 6145. [CrossRef] [Google Scholar]
- Vaarkamp, M.,Miller, J.T.,Modica, F.S. and Koningsberger, D.C. (1996) On the relation between particle morphology, structure of the metal-support Interface, and catalytic properties of Pt/-Al2O3, J. Catal. 163, 294. [Google Scholar]
- Pandya, K.I.,Heald, S.M.,Hriljac, J.A.,Petrakis, L. and Fraissard, J. (1996) Characterization by EXAFS, NMR, and other techniques of Pt/NaY Zeolite at industrially relevant low concentration of Platinum, J. Phys. Chem. B, 100, 5070. [CrossRef] [Google Scholar]
- Brown, W. and King, D.A. (2000) NO chemisorption and reactions on metal surfaces: a new perspective, J. Phys. Chem. B. 104, 2578. [CrossRef] [Google Scholar]
-
Schneider, S.,Bazin, D.,Garin, F.,Maire, G.,Dexpert, H.,Meunier, G.,Noirot, R. and Capelle, M. (1999) NO reaction over nanometer scale platinum clusters deposited on
-alumina: an XAS study, Appl. Catal., 189, 39. [CrossRef] [MathSciNet] [Google Scholar]
- Loof, P.,Stenbom, B.,Norden, H. and Kasemo, B. (1993) Rapid Sintering in NO of Nanometer-Sized Pt Particles on small g-Al2O3 Observed by CO Temperature-Programmed Desorption and Transmission Electron Microscopy, J. Catal., 44, 60. [CrossRef] [Google Scholar]
- Wang, X.,Sigmon, S.M.,Spivey, J.J. and Lamb, H.H. (2004) Support and particle size effects on direct NO decomposition over platinum, Catal. Today, 96, 11. [CrossRef] [Google Scholar]
- Hashimoto, T., Hayashi, H., Udagawa, Y. and Ueno, A. (1995) NO induecd morphology changes by Xafs study, Physica B, 208/209, 683. [Google Scholar]
- Campbell, T.,Dent, A.J.,Diaz-Moreno, S.,Evans, J.,Fiddy, S.G.,Newton, M.A. and Turin, S. (2002) Susceptibility of a heterogeneous catalyst, Rh/Al2O3, to rapid structural change by exposure to NO, Chem. Commum., 30, 304-305. [CrossRef] [Google Scholar]
- Krause, K.R., and Schmidt, L.D. (1993) Microstructural changes and volatilization of Rh and Rh/Ce on SiO2 and Al2O3 in NO + CO, J. Catal., 140, 424. [CrossRef] [Google Scholar]
- Wögerbauer, C.,Maciejewski, M. and Baiker, A. (2002) Structure Sensitivity of NO Reduction over Iridium Catalysts in HC–SCR, J. Catal., 205, 157. [CrossRef] [Google Scholar]
- Haq, S.,Carew, A. and Raval, R. (2004) Nitric oxide reduction by Cu nanoclusters supported on thin Al2O3 films, J.Catal., 221, 204. [CrossRef] [MathSciNet] [Google Scholar]
- Ramsier, R.D., Gao, Q., NeergaardWaltenburg, H.,Lee, K.W.,Nooij, O.W.,Lefferts, L. and Yates, J.T. (1994) NO adsorption and thermal behavior on Pd surfaces. A detailed comparative study, Surf. Sci., 320, 209. [CrossRef] [Google Scholar]
- Sugai, S.,Watanabe, H.,Kioka, T.,Miki, H. and Kawasaki, K. (1991) Chemisorption of NO on Pd(100), (111) and (110) surfaces studied by AES, UPS and XPS, Surf. Sci., 259, 109. [CrossRef] [MathSciNet] [Google Scholar]
- Sharpe, R.G. and Bowker, M. (1996) The adsorption and decomposition of NO on Pd(110), Surf. Sci., 360, 21. [CrossRef] [Google Scholar]
- Nakamura, I.,Fujitani, T. and Hamada, H. (2002) Adsorption and decomposition of NO on Pd surfaces, Surf. Sci., 514, 409. [CrossRef] [Google Scholar]
- HøjrupHansen, K.,Sljivananin, Z.,Laesgsgaard, E.,Besenbacher, F. and Stensgaardet, I. (2002) Adsorption of O2 and NO on Pd nanocrystals supported on Al2O3/NiAl(110): overlayer and edge structures, Surf. Sci., 505, 25. [CrossRef] [Google Scholar]
- Garcia-Cortès, J.M., Pérez-Ramirez, J., Rouzaud, J.N., Vaccaro, A.R., Illàn-Gémez, M.J. and Salinas-Martinez de Lecea, C. (2003) On the structure sensitivity of deNOx HCSCR over Pt-beta catalysts, J. Catal., 218, 111. [CrossRef] [Google Scholar]
- Barbier, J., Chollier, M.J. and Epron, F. (1997) In “Catalysis by Metals” Renouprez, A.J. and Jobic, H. (Eds.), EDP Sciences-Springer. [Google Scholar]
- Barbier, J. (1992) Redox reactions in the tailoring of bimetallic catalysts in Advances in Catalyst Preparation, Catalytica Studies Division, Mountain View, California. [Google Scholar]
- Derosa, P.A.,Seminario, J.M. and Balbuena, P.B. (2001) Properties of Small Bimetallic Ni-Cu Clusters, J. Phys. Chem. A, 105, 7917. [CrossRef] [Google Scholar]
- Tréglia, G.,Legrand, B.,Ducastelle, F.,Saúl, A.,Gallis, C.,Meunier, I.,Mottet, C. and Senhaji, A. (1999) Alloy surfaces: segregation, reconstruction and phase transitions, Comp. Mater. Sci., 15, 196. [CrossRef] [Google Scholar]
- Khoutami, A.,Legrand, B.,Mottet, C. and Tréglia, G. (1994) On the influence of topology on the energy profile in metallic Pd clusters, Surf. Sci., 307-309, 735. [CrossRef] [Google Scholar]
- Bazin, D.,Mottet, C. and Tréglia, G. (2000) New opportunities to understand heterogeneous catalysis processes through synchrotron radiation studies and theoretical calculations of density of states: The case of nanometer scale bimetallic particles, Appl. Catal. A-Gen., 200, 47. [Google Scholar]
- Garcia-Gutierrez, D.I.,Gutierrez-Wing, C.E.,Giovanetti, L.E.,Ramallo-Lopez, J.M.,Requejo, F.G. and Jose-Yacaman, M. (2005) Temperature Effect on the Synthesis of Au-Pt Bimetallic Nanoparticles, J. Phys. Chem. B, 109, 3813. [CrossRef] [PubMed] [Google Scholar]
- Nutt, M.O.,Hughes, J.B. and Wong, M.S. (2005) Designing Pd on Au bimetallic nanoparticles catalysts for trichloroethene hydrodechlorination, Environ. Sci. Technol., 39, 1346-1353. [CrossRef] [PubMed] [Google Scholar]
- Borgna, A.,Anderson, B.G.,Saib, A.M.,Bluhm, H.,Havecker, M.,Knop-Gericke, A.,Kuiper, A.E.T.,Tamminga, Y. and Niemantsverdriet, J.W. (2004) Pt-Co/SiO2 Bimetallic Planar Model Catalysts for Selective Hydrogenation of Crotonaldehyde, J. Phys. Chem. B, 108, 7905. [CrossRef] [Google Scholar]
- Renouprez, A.,Faudon, J.F.,Massardier, J.,Rousset, J.L.,Delichère, L. and Bergeret, G. (1997) Properties of supported PdNi catalysts prepared by coexchange and organometallic hemistry, J. Catal., 170, 181. [CrossRef] [Google Scholar]
- Zhu, L.,Liang, K.S.,Zhang, B.,Bradley, J.S. and DePristo, A.E. (1997) Bimetallic PdCu catalysts: X-ray diffraction and theoretical modeling studies, J. Catal., 167, 412. [CrossRef] [Google Scholar]
- Shen, J., Hill, J.H., Watve, R.M., Spiewak, B.E. and Dumesic, J.A. (1999) Microcalorimetric, infrared spectroscopic, and DFT studies of ethylene adsorption on Pt/SiO2 and Pt-Sn/SiO2 catalysts, J. Phys. Chem. B, 103, 3923. [Google Scholar]
- Hill, J.M.,Shen, J.,Watwe, R.M. and Dumesic, J.A. (2000) Microcalorimetric, infrared spectroscopic, and DFT studies of ethylene adsorption on Pd and Pd/Sn, Catal. Langmuir, 16, 2213. [CrossRef] [Google Scholar]
- Deutsch, S.E.,Miller, J.T.,Tomoshige, K.,Iwasawa, Y.,Weber, W.A. and Gates, B.C. (1996) Supported Ir and Pt Clusters: Reactivity with oxygen investigated by extended Xray absorption fine structure spectroscopy, J. Phys. Chem. B, 100, 13408. [CrossRef] [Google Scholar]
- Reifsnyder, S.N.,Otten, M.M.,Sayers, D.E. and Lamb, H. (1997) Hydrogen chemisorption on Silica-supported Pt clusters: In situ X-ray absorption spectroscopy, J. Phys. Chem., 101, 4972. [CrossRef] [Google Scholar]
Open Access
Numéro |
Oil & Gas Science and Technology - Rev. IFP
Volume 61, Numéro 5, September-October 2006
|
|
---|---|---|
Page(s) | 677 - 689 | |
DOI | https://doi.org/10.2516/ogst:2006006 | |
Publié en ligne | 1 janvier 2007 |
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.