-
Gros, V., Martin, D., Poisson, N., Kanakidou, M., Bonsang, B., LeGuern, F. and Demont, D. (1998) Ozone observation and C2-C5 hydrocarbon observations in the marine boundary layer between 45
S and 77
S. Tellus B, 50, 430-448. [CrossRef] [Google Scholar]
- Day, J.A. (1964) Production of droplets and salt nuclei by the bursting of air bubbles films. Q. J. Roy. Meteor. Soc., 90, 72-78. [CrossRef] [Google Scholar]
- McIntyre, F. (1968) Bubbles. A boundary-layer for micron thick sample of liquid surface. J. Chem. Phys., 72, 589-592. [CrossRef] [Google Scholar]
- Wu, J. (1979) Sea spray in the atmospheric surface layer: review and analysis of laboratory and oceanic results, J. Geophys. Res., 84, 1638-1704. [Google Scholar]
- Sadiki, M., Quentel, F., Elléouet, C., Huruguen, J.-P., Jestin, J., Andrieux, D., Olier, R. and Privat, M. (2003) Coadsorption at the air/water interface likely explains some pollutants transfer to the atmosphere: benzene and lead case. Atmos. Environ., 37, 3551-3559. [Google Scholar]
- Sadiki, M.,Quentel, F.,Elléouet, C.,Olier, R. and Privat, M. (2005) Coadsorption at the air/water interface as source of pollutant transfer to atmosphere. Case study of benzene/cyclohexane traces and lead, Atmos. Environ., 39, 2661-2672. [CrossRef] [Google Scholar]
- Botelho, C.M.S.,Boaventure, R.A.R. and Gonçalves, M.L.S.S. (2002) Interactions of Pb(II) with particles of a polluted river. Anal. Chim. Acta, 465, 73-85. [CrossRef] [Google Scholar]
- Adamson, A.W., Physical chemistry of surfaces, Wiley-Interscience, New-York (1990). [Google Scholar]
- Cutting, C.L. and Jones, D.C. (1955) Adsorption of insoluble vapours on water surfaces. J. Chem. Soc., 4067-4075. [Google Scholar]
- Shahidzadeh, N.,Bonn, D.,Ragil, K.,Broseta, D. and Meunier, J. (1998) A sequence of two wetting transitions by tuning the Hamaker constant, Phys. Rev. Lett., 80, 3992-3996. [CrossRef] [Google Scholar]
- Bertrand, E.,Hobbs, H.,Broseta, D.,Indekeu, J.,Bonn, D. and Meunier, J. (2000) First-order and critical wetting of alkanes on water. Phys. Rev. Lett., 85, 1282-1285. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
- Bertrand, E.,Bonn, D.,Broseta, D. and Meunier, J. (1999) Wetting of Hydrocarbon mixtures on water under varying pressure or composition. J. Petrol. Sci. Eng., 24, 221-230. [CrossRef] [Google Scholar]
- Wan, J. and Tokunaga, T.K. (1998). Measuring partition coefficients of colloids at air-water interfaces. Env. Sci. Technol., 32, 3293-3298. [CrossRef] [Google Scholar]
- Cahn, J.W. (1977) Critical point wetting. J. Chem. Phys., 66, 3667-3672. [CrossRef] [Google Scholar]
- Indekeu, J.,Ragil, K.,Bonn, D.,Broseta, D. and Meunier, J. (1999). Wetting of alkanes on water from a Cahn-type theory. J. Stat. Phys., 95, 1009-1043. [CrossRef] [Google Scholar]
- Rowlinson, J.S. and Widom, B. (1982) Molecular theory of capillarity. Clarendon, Oxford. [Google Scholar]
- Yoffe, A. and Heymann, E. (1943). Note on Antonoff's rule. J. Chem. Phys., 47, 409-410. [CrossRef] [Google Scholar]
- Takii, T. and Mori, Y.H. (1993). Spreading coefficients of aliphatic hydrocarbons on water. J. Colloid Interf. Sci., 161, 31-37. [CrossRef] [Google Scholar]
- Ross, S. and Becher, P. (1992). J. Colloid Interf. Sci., 149, 575-579. [Google Scholar]
- Lemlich, R. (1972) Adsorptive bubble methods, in Recent developments in separation science, vol. 1, 113-127, Li, N.N., (Ed.), The Chemical Rubber Co., Cleveland OH. [Google Scholar]
- Yaron, B., Calvet, R. and Prost, R. (1996) Soil pollution. Processes and dynamics. Springer, Berlin. [Google Scholar]
- Carslow, H.S. and Jaeger, J.C. (1959) Conduction of heat in Solids, 2nd ed. Oxford Clarendon Press, Oxford. [Google Scholar]
- Vogt, F.,Tacke, M.,Jakusch, M. and Mizaikoff, B. (2000) A UV spectroscopic method for monitoring aromatic hydrocarbons dissolved in water. Anal. Chim. Acta, 422, 187-198. [CrossRef] [MathSciNet] [Google Scholar]
- Norme française NF ISO 11423-1. Qualité de l'eau. Détermination du benzène et de certains dérivés benzéniques par chromatographie en phase gazeuse de l'espace de tête. [Google Scholar]
-
Lovric
, M. (2002) Stripping voltammetry in Electroanalytical Methods: Guide to experiments and applications, Scholz, F. (Ed.) Springer-Verlag, New York, 191-211. [Google Scholar]
- Mc Auliffe, C. (1966) Solubility in water of paraffin, cycloparaffin, olefin, acetylene, cycloolefin, and aromatic hydrocarbons. J. Phys. Chem., 70, 1267-1275. [CrossRef] [Google Scholar]
- Mc Auliffe, C. (1969) Solubility in water of normal C9 and C10 alkane hydrocarbons. Science, 163, 478-479. [CrossRef] [PubMed] [Google Scholar]
- Mc Auliffe, C. (1963) Solubility in water of C1-C9 hydrocarbons. Nature, 200, 1092-1093. [CrossRef] [Google Scholar]
- Ramos-Gomez, F. and Widom, B. (1980) Noncritical interface near a critical end point II, Physica A, 104, 595-620. [CrossRef] [Google Scholar]
- Tavan, P. and Widom, B. (1983) Van der Waals model for the surface tension of liquid 4He near the lambda point, Phys. Rev. B, 27, 180-193. [Google Scholar]
- Widom, B. (1985) Phase equilibrium and interfacial structure. Chem. Soc. Rev., 14, 121-140. [CrossRef] [Google Scholar]
- Nagarajan, N.,Webb, W.W. and Widom, B. (1982) Surface tension of two-component liquid mixture near its critical solution point, J. Chem. Phys., 77, 5771-5783. [CrossRef] [Google Scholar]
- Amara, M.,Privat, M.,Bennes, R. and Tronel-Peyroz, E. (1991) Experimental study of the critical laws for the surface tensions along the critical isochore, and the coexistence curve and for the liquid-liquid interface. Water-2,5 lutidine system, Europhys. Lett., 16, 153-158. [CrossRef] [Google Scholar]
- Karad, S.,Amara, M.,Laouenan, A.,Tronel-Peyroz, E.,Bennes, R. and Privat, M. (1994) Universal amplitude ratios of surface tensions near a critical point in a liquid binary system: water-2,5 lutidine, J. Chem. Phys., 100, 1498-1502. [CrossRef] [Google Scholar]
- Massart, D.L., Vandeginste, B.G.M., Buydens, L.M.C., De Jong, S., Lewi, P.J. and Smeyers-Verbeke, J. (1997) Handbook of Chemometrics and Qualimetrics. Part A. Elsevier, Amsterdam, 310. [Google Scholar]
- Hamaker, H.C. (1937) The London-Van der Waals attraction between spherical particles. Physica IV-10, 1058-1072. [Google Scholar]
- Acharid, A.,Quentel, F.,Elleouet, C.,Olier, R. and Privat, M. (2006) Coadsorption of carbofuran and lead at the air/water interface. Possible occurrence of non-volatile pollutant co-transfer to the atmosphere. Chemosphere, 62, 989-997. [CrossRef] [PubMed] [Google Scholar]
- Aveyard, R.,Saleem, S.M. and Heselden, R. (1977) Desorption of electrolytes at liquid-vapour and liquid-liquid interfaces. J. Chem. Soc. Faraday T., 73, 84-94. [CrossRef] [Google Scholar]
- Onsager, L. and Samaras, N.N.T. (1934) The surface tension of Debye-Hückel electrolytes. J. Chem. Phys., 2, 528-536. [CrossRef] [Google Scholar]
- Wagner, C. (1924) Die Oberflächenspannung verdünnter elektrolytlösungen. Physik Z., 25, 474-477. [Google Scholar]
- Karraker, K.A. and Radke, C.J. (2002) Disjoining pressure, zeta potential, and surface tension of aqueous non-ionic surfactants/electrolyte solutions: theory and comparison with experiments. Adv. Colloid Interface Sci., 96, 231-264. [CrossRef] [PubMed] [Google Scholar]
- Jungwirth, P. and Tobias, D.J. (2001) Molecular structure of salt solutions: a new view of the interface with implication for heterogeneous atmospheric chemistry. J. Phys. Chem. B, 105, 10468-10472. [CrossRef] [Google Scholar]
- ASTDR 1993. Toxicological profile for lead. Final Report of the Agency for Toxic Substances and Disease Registry. Public Health Service, US Department of Health and Human Service (April, 1993). [Google Scholar]
Open Access
Issue |
Oil & Gas Science and Technology - Rev. IFP
Volume 61, Number 5, September-October 2006
|
|
---|---|---|
Page(s) | 661 - 676 | |
DOI | https://doi.org/10.2516/ogst:2006005 | |
Published online | 01 January 2007 |
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.