Dossier: Petroleum Industry Applications of Thermodynamics
Open Access
Numéro
Oil & Gas Science and Technology - Rev. IFP
Volume 61, Numéro 3, May-June 2006
Dossier: Petroleum Industry Applications of Thermodynamics
Page(s) 387 - 403
DOI https://doi.org/10.2516/ogst:2006040a
Publié en ligne 1 janvier 2007
  • McQuarrie, D.A. (1976) Statistical Mechanics, Harper and Collins, New York. [Google Scholar]
  • Allen, M.P. and Tildesley, D.J. (1987) Computer Simulation of Liquids, Oxford Science Publications, Oxford. [Google Scholar]
  • Frenkel, D. and Smit, B. (1996) Understanding Molecular Simulation, Academic Press, San Diego. [Google Scholar]
  • Allen, W. and Rowley, R.L. (1997) Predicting the Viscosity of Alkanes Using Nonequilibrium Molecular Dynamics: Evaluation of Intermolecular Potential Models. J. Chem. Phys., 106, 10273. [CrossRef] [Google Scholar]
  • Rowley, R.L. and Ely, J.F. (1992) Non-Equilibrium Molecular Dynamics Simulations of Structured Molecules. II. Isomeric Effects on the Viscosity of Models for n-hexane, Cyclohexane and Benzene. Mol. Phys., 75, 713-730. [CrossRef] [Google Scholar]
  • Wang, B.Y. and Cummings, P.T. (1993) Non-Equilibrium Molecular Dynamics Calculation of the Shear Viscosity of Carbon Dioxide/Ethane Mixtures. Molecular Simulation, 10, 1-11. [CrossRef] [MathSciNet] [Google Scholar]
  • Fuchs, A.H. and Cheetham, A.K. (2001) Adsorption of Guest Molecules in Zeolitic Materials: Computational Aspects. J. Phys. Chem B, 105, 7375-7383. [CrossRef] [Google Scholar]
  • Panagiotopoulos, A.Z. (1987) Direct Determination of Phase Coexistence Properties of Fluids by Monte Carlo Simulation in a New Ensemble. Molecular Physics, 61, 813-826. [CrossRef] [Google Scholar]
  • Lagache, M.,Ungerer, P.,Boutin, A. and Fuchs, A.H. (2001) Prediction of Thermodynamic Derivative Properties of Fluids by Monte Carlo Simulation, Phys. Chem. Chem. Phys., 3, 4333-4339. [CrossRef] [Google Scholar]
  • Lagache, M.,Ungerer, P. and Boutin, A. (2004) Prediction of Thermodynamic Derivative Properties of Natural Condensate Gases at High Pressure by Monte Carlo Simulation. Fluid Phase Equilibria, 220, 211-223. [CrossRef] [Google Scholar]
  • Jorgensen, W.L. and Madura, J.D. (1984) Optimized Intermolecular Potential Functions for Liquid Hydrocarbons. J. Am. Chem. Soc., 106, 6638. [CrossRef] [Google Scholar]
  • Jorgensen, W.L.,Maxwell, D.S. and Tirado-Rives, J. (1996) Developing and Testing of the OPLS-AA Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc., 118, 11225. [CrossRef] [Google Scholar]
  • Sun, H. (1998) COMPASS: an Ab Initio Force-Field Optimized for Condensed Phase Applications - Overview with Details on Alkane and Benzene Compounds. J. Phys. Chem. B, 102, 7338-7364. [CrossRef] [Google Scholar]
  • Smit, B., Karaborni, S. and Siepmann, J.I. (1995) Computer Simulation of Vapor-liquid Phase Equilibria of n-Alkanes. J. Chem. Phys., 102, 2126. [Google Scholar]
  • Martin, M.G. and Siepmann, J.I. (1998) Transferable Models for Phase Equilibria 1. United-atom Description of n-alkanes, J. Phys. Chem. B, 102, 2569. [CrossRef] [Google Scholar]
  • Nath, S.A.,Escobedo, F.A. and de Pablo, J.J. (1998) On the Simulation of Vapour-liquid Equilibria for Alkanes. J. Chem. Phys., 108, 9905. [CrossRef] [Google Scholar]
  • Toxvaerd, S. (1990) Molecular Dynamics Calculation of the Equation of State of Alkanes. J. Chem. Phys., 93, 4290. [CrossRef] [Google Scholar]
  • Ungerer, P.,Beauvais, C.,Delhommelle, J.,Boutin, A.,Rousseau, B. and Fuchs, A.H. (2000) Optimization of the Anisotropic United Atoms Intermolecular Potential for n-Alkanes. J. Chem. Phys., 112, 5499-5510. [CrossRef] [Google Scholar]
  • Toxvaerd, S. (1997) Equation of State for Alkanes II. J. Chem. Phys., 107, 5197. [CrossRef] [Google Scholar]
  • Metropolis, N.,Rosenbluth, A.W.,Rosenbluth, M.N.,Teller, A.H. and Teller, E. (1953) Equation of State Calculations by Fast Computing Machines. J. Chem. Phys., 21, 1087. [NASA ADS] [CrossRef] [Google Scholar]
  • Cracknell, R.F.,Nicholson, D. and Parsonage, N.G. (1990) Rotational Insertion Bias: a Novel Method for Simulating Dense Phases of Structured Particles, with Particular Application to Water. Molecular Physics, 71, 931. [CrossRef] [Google Scholar]
  • de Pablo, J.J.,Laso, M. and Suter, U.W. (1992) Estimation of the Chemical Potential of Chain Molecules by Simulation. J. Chem. Phys., 96, 6157. [CrossRef] [Google Scholar]
  • Macedonia, M.D. and Maginn, E.J. (1999) A Biased Grand Canonical Monte Carlo Method for Simulating Adsorption Using All-Atom and Branched United Atom Models. Molecular Physics, 96, 1375-1390. [CrossRef] [Google Scholar]
  • Widom, B. (1963) Some Topics in the Theory of Fluids. J. Chem. Phys., 39, 2808-2812. [CrossRef] [Google Scholar]
  • Ungerer, P., Tavitian, B. and Boutin, A. (2005) Applications of Molecular Simulation in the Oil and Gas Industry - Monte Carlo Methods. Editions Technip, Paris. [Google Scholar]
  • Yan, Q. and de Pablo, J.J. (1999) Hyper-Parallel Tempering Monte Carlo Application to the Lennard-Jones Fluid and the Restricted Primitive Model. J. Chem. Phys., 111, 9509. [CrossRef] [Google Scholar]
  • Dysthe, D.,Fuchs, A.H. and Rousseau, B. (1999) Fluid Transport Properties by Equilibrium Molecular Dynamics. I. Methodology at Extreme Fluid States. J. Chem. Phys., 110, 4047. [CrossRef] [Google Scholar]
  • Dysthe, D.,Fuchs, A.H. and Rousseau, B. (1999) Fluid Transport Properties by Equilibrium Molecular Dynamics. II. Multicomponent Systems. J. Chem. Phys., 110, 4060. [CrossRef] [Google Scholar]
  • Dysthe, D.,Fuchs, A.H. and Rousseau, B. (2000) Fluid Transport Properties by Equilibrium Molecular Dynamics. III. Evaluation of United Atom Interaction Potential Models for Pure Alkanes. J. Chem. Phys., 112, 7581. [CrossRef] [Google Scholar]
  • Nosé, S. (1984) A Unified Formulation of the Constant Temperature Molecular Dynamics Methods. J. Chem. Phys., 81, 511. [NASA ADS] [CrossRef] [Google Scholar]
  • Hoover, W.G. (1985) Canonical Dynamics: Equilibrium Phase-Space Distributions. Phys. Rev. A, 31, 1695. [CrossRef] [PubMed] [Google Scholar]
  • Evans, D.J. and Morris, G.P. (1983) Isothermal-Isobaric Molecular Dynamics. Chem. Phys., 77, 63. [CrossRef] [Google Scholar]
  • Bourasseau, E.,Ungerer, P.,Boutin, A. and Fuchs, A.H. (2002) Monte Carlo Simulation of Branched Alkanes and Long Chain n-Alkanes with Anisotropic United Atoms Intermolecular Potential. Molecular Simulation, 28, 317-336. [CrossRef] [Google Scholar]
  • Rowley, R.L., Wilding, W.V., Oscarson, J.L., Zundel, N.A., Marshall, T.L., Daubert, T.E. and Danner, R.P. (2002) DIPPR ® Data Compilation of Pure Compound Properties. Design Institute for Physical Properties, AIChE, New York. [Google Scholar]
  • Bourasseau, E.,Sawaya, T.,Mokbel, I.,Jose, J. and Ungerer, P. (2004) Measurement and Prediction of Vapour Pressures of 2,6,10,14-tetramethylpentadecane (pristane). Experimental and Monte Carlo Simulation Results. Fluid Phase Equilibria, 225, 49-57. [Google Scholar]
  • Kortekaas, W.G., Peters, C.J. and Arons, J.d.S. (1997) Joule-Thomson Expansion of High Pressure High Temperature Gas Condensates. Fluid Phase Equilibria, 139, 205. [Google Scholar]
  • Ungerer, P.,Wender, A.,Demoulin, G.,Bourasseau, E. and Mougin, P. (2004) Thermodynamic Properties of H2S-rich Systems by Monte Carlo Simulation. Molecular Simulation, 30, 631-648. [CrossRef] [Google Scholar]
  • Nieto-Draghi, C.,Mackie, A.D. and Bonet-Avalos, J. (2005) Transport Coefficients and Dynamic Properties of Hydrogen Sulphide. J. Chem. Phys., 123, 014505. [CrossRef] [PubMed] [Google Scholar]
  • Kristof, T. and Liszi, J. (1997) Effective Intermolecular Potential for Fluid Hydrogen Sulfide. J. Phys. Chem. B, 101, 5480-5483. [CrossRef] [Google Scholar]
  • Leu, A.D.,Carroll, J.J. and Robinson, D.B. (1992) The Equilibrium Phase Properties of the Methanol-Hydrogen Sulfide Binary System. Fluid Phase Equilibria, 72, 163. [CrossRef] [Google Scholar]
  • Leeuwen, M.E.V. and Smit, B. (1995) Molecular Simulation of the Vapor-liquid Coexistence Curve of Methanol. J. Phys. Chem., 99, 1831. [CrossRef] [Google Scholar]
  • Lisal, M.,Smith, W.R. and Nezbeda, I. (2001) Accurate Vapour-liquid Equilibrium Calculations for Complex Systems Using the Reaction Gibbs Ensemble Monte Carlo Method. Fluid Phase Equilibria, 181, 127. [CrossRef] [Google Scholar]
  • Gillespie, P.C. and Wilson, G.M. (1982) Vapor-Liquid and Liquid-liquid Equilibria: Water-Methane, Water-Carbon Dioxide, Water-Hydrogen Sulfide, Water-n-Pentane, Water- Methane-n-Pentane. Gas Processors Association, Tulsa, Research Report RR 48. [Google Scholar]
  • Jorgensen, W.L.,Chandrasekhar, J. and Madura, J.D. (1983) Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys., 79, 926-935. [NASA ADS] [CrossRef] [Google Scholar]
  • Prausnitz, J.M., Lichtenthaler, R.N. and Azevedo, E.G.D. (1986) Molecular Thermodynamics of Fluid-Phase Equilibria. Prentice-Hall, Englewood Cliffs, New Jersey, USA. [Google Scholar]
  • Harris, J.G. and Yung, K.H. (1995) Carbon Dioxide's Liquid-Vapor Coexistence Curve and Critical Properties as Predicted by a Simple Molecular Model. J. Phys. Chem., 99, 12021-12024. [CrossRef] [Google Scholar]
  • Sato, Y., Fujiwara, K., Takikawa, T., Sumarno,Takishima, S. and Masuoka, H. (1999) Solubilities and Diffusion Coefficients of Carbon Dioxide and Nitrogen in Polypropylene, High-Density Polyethylene and Polystyrene under High Pressures and Temperatures. Fluid Phase Equilibria, 162, 261. [CrossRef] [Google Scholar]
  • Chaudhary, B.I. and Johns, A.I. (1998) Solubilities of Nitrogen, Isobutane and Carbon Dioxide in Polyethylene. Journal of Cellular Plastics, 34, 312. [Google Scholar]
  • Möller, D,Oprzynski, J.,Müller, A. and Fischer, J. (1992) Prediction of Thermodynamic Properties of Fluid Mixtures by Molecular Dynamics Simulations: Methane-Ethane. Molecular Physics, 75, 363. [CrossRef] [Google Scholar]
  • Lisal, M.,Smith, W.R. and Nezbeda, I. (2000) Molecular Simulation of Multicomponent Reaction and Phase Equilibria in MTBE Ternary System. AIChE Journal, 46, 4. [CrossRef] [Google Scholar]
  • Bourasseau, E. (2003) Prédiction de propriétés d'équilibre de phases par simulation moléculaire - Développement d'algorithmes et optimisation de potentiels. PhD thesis, Université de Paris Sud, Orsay, France. [Google Scholar]
  • Bourasseau, E.,Ungerer, P. and Boutin, A. (2002) Prediction of Equilibrium Properties of Cyclic Alkanes by Monte Carlo Simulation - New Anisotropic United Atoms Potential - New Transfer Bias Method. J. Phys. Chem. B, 106, 5483-5491. [CrossRef] [Google Scholar]
  • Bourasseau, E.,Haboudou, M.,Boutin, A.,Fuchs, A.H. and Ungerer, P. (2003) New Optimization Method for Intermolecular Potentials - Optimization of a New Anisotropic United Atoms Potential for Olefins - Prediction of Equilibrium Properties. J. Chem. Phys., 118, 3020-3034. [CrossRef] [Google Scholar]
  • Contreras-Camacho, R.O.,Ungerer, P.,Boutin, A. and Mackie, A.D. (2004) Optimized Intermolecular Potential for Aromatic Hydrocarbons Based on Anisotropic United Atoms. I. Benzene. J. Phys. Chem. B, 108, 14109-14114. [CrossRef] [Google Scholar]
  • Contreras-Camacho, R.O.,Lachet, V.,Ahunbay, M.G.,Perez, J.,Ungerer, P.,Boutin, A. and Mackie, A.D. (2004) Optimized Intermolecular Potential for Aromatic Hydrocarbons Based on Anisotropic United Atoms. II. Alkylbenzenes and Styrene. J. Phys. Chem. B, 108, 14115-14123. [CrossRef] [Google Scholar]
  • Ahunbay, M.G.,Perez-Pellitero, J.,Contreras-Camacho, R. O.,Teuler, J.M.,Ungerer, P. and Mackie, A.D. (2005) Optimized Intermolecular Potential for Aromatic Hydrocarbons Based on Anisotropic United Atoms. III. Polyaromatics and Naphthenoaromatics. J. Phys. Chem. B, 109, 2970-2976. [CrossRef] [PubMed] [Google Scholar]
  • Reamer, H.H.,Sage, B.H. and Lacey, W.N. (1953) Phase Equilibria in Hydrocarbon Systems. Volumetric and Phase Behavior of n-Pentane - Hydrogen Sulfide System. Ind. Eng. Chem., 45, 1805-1809. [CrossRef] [Google Scholar]
  • Laugier, S. and Richon, D. (1995) Vapor-Liquid Equilibria for Hydrogen Sulfide + Hexane, + Cyclohexane, + Benzene, + Pentadecane, and (hexane + Pentadecane). J. Chem. Eng. Data, 40, 153-159. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.