Dossier: Petroleum Industry Applications of Thermodynamics
Open Access
Numéro
Oil & Gas Science and Technology - Rev. IFP
Volume 61, Numéro 3, May-June 2006
Dossier: Petroleum Industry Applications of Thermodynamics
Page(s) 363 - 386
DOI https://doi.org/10.2516/ogst:2006039a
Publié en ligne 1 janvier 2007
  • Alder, B.J., D.A. Young and M.A.Mark (1972) Studies in molecular dynamics. X. Corrections to the augmented van der Waals theory for the square well fluid, J. Chem. Phys, 56, 6, 3013-3029. [Google Scholar]
  • Atkins, P. and de Paula, J., 2002, Atkins' Physical Chemistry, Oxford U. Press, 7th edition. [Google Scholar]
  • Banaszak, M.,Chiew, Y.C. and Radosz, M. (1993) Thermodynamic perturbation theory of polymerisation, Phys. Rev. E., 48, 3760. [CrossRef] [Google Scholar]
  • Barker, J.A. and Henderson, D. (1967) Perturbation theory and equation of state for fluids II. A successful theory of liquids, J. Chem. Phys., 47, 4714. [CrossRef] [Google Scholar]
  • Behar, E.,Simonet, R. and Rauzy, E. (1985) A new non-cubic equation of state, Fluid Phase Equilibria, 21, 237-255. [CrossRef] [Google Scholar]
  • Behar, E.,Simonet, R. and Rauzy, E. (1986) A new non-cubic equation of state, ERRATUM, Fluid Phase Equilibria, 31, 319. [CrossRef] [Google Scholar]
  • Bernabe, D.,Romero-Martinez, A. and Trejo, A. (1988) Fluid Phase Equilibria, 40, 279-288. [CrossRef] [Google Scholar]
  • Blas, F.J. and Vega, L.F. (1998) Ind. Eng. Chem. Res., 37, 660. [CrossRef] [Google Scholar]
  • Boukouvalas C., Spiliotis N., Coutsikos P., Tzouvaras N., Tassios D., 1994, Fluid Phase Equilibria, 92, 75-106. [Google Scholar]
  • Brunner, E., 1994, Gas Extraction, Springer New York. [Google Scholar]
  • Budantseva, L.S.,Lesteva, T.M. and Nemtsov, M.S. (1975) Deposited Doc. VINITI, 999-75, 1-15. [Google Scholar]
  • Carnahan, N.F. and Starling, K.E. (1972) Intermolecular repulsions and the equation of state for fluids, AIChE J., 18, 6, 1184-1189. [CrossRef] [Google Scholar]
  • Carnahan, N.F. and Starling, K.E. (1969) Equation of state for nonattracting rigid spheres, J. Chem. Phys., 51, 2, 635-636. [NASA ADS] [CrossRef] [Google Scholar]
  • Chapman, W.G.,Jackson, G. and Gubbins, K.E. (1988) Phase Equilibria of Associating Fluids: Chain Molecules with Multiple Bonding Sites, Mol. Phy., 65, 1057. [CrossRef] [Google Scholar]
  • Chapman, W.G.,Gubbins, K.E.,Jackson, G. and Radosz, M. (1990) New reference equation of state for associating liquids, Ind. Eng. Chem. Res., 29, 1709-1721. [CrossRef] [Google Scholar]
  • Chen, S.S. and Kreglewski, A. (1977) Application of the augmented van der waals theory of fluids: I Pure fluids, Ber. Bunsen-Ges. Phy. Chem., 81, 10, 1048. [CrossRef] [Google Scholar]
  • Chen J.,Fischer K. and Gmehling J. (2002) Modification of PSRK mixing rules and results for vapor-liquid equilibria, enthalpy of mixing and activity coefficients at infinite dilution, Fluid Phase Equilibria, 200, 411-429. [CrossRef] [Google Scholar]
  • Chien, C.H.,Greenkorn, R.A. and Chao, K.C. (1983) Chain-ofrotators equation of state, AIChE J., 29, 4, 560-571. [CrossRef] [Google Scholar]
  • Chiew, Y.C. and Percus-Yevick (1991) Integral equation theory for athermal hard-sphere chains, II: Average intermolecular correlation function, Mol. Phys, 73, 359. [Google Scholar]
  • Coniglio, L.,Trassy, L. and Rauzy, E. (2000) Estimation of thermophysical properties of heavy hydrocarbons through a group contribution based equation of state, Ind. Eng. Chem. Res., 39, 5037-5048. [CrossRef] [Google Scholar]
  • Cotterman, R.L.,Shwarz, B.J. and Prausnitz, J.M. (1986) Molecular thermodynamics for fluids at low and high densities, AIChE. J., 32, 1787. [CrossRef] [Google Scholar]
  • Dahl, S. and Michelsen, M. (1990) High Pressure VLE with a UNIFAC - based EOS, AIChE J., 36, 1829-1836. [CrossRef] [Google Scholar]
  • Daridon, J.L.,Lagourette, B.,Saint-Guirons, H. and Xans, P. (1993) A cubic equation of state model for phase equilibrium calculation of alkane+carbon dioxide+water using a group contribution Kij, Fluid Phase Eq., 91, 31-54. [CrossRef] [Google Scholar]
  • de Sant'Ana, H.B.,Ungerer, P. and de Hemptinne, J.-C. (1999) Evaluation of an improved volume translation for the prediction of hydrocarbon volumetric properties, Fluid Phase Equilibria, 154, 193-204. [CrossRef] [Google Scholar]
  • Derawi, S.O. (2002) Modelling of phase equilibria containing associating fluids, PhD thesis, DTU. [Google Scholar]
  • Derawi, S.O., Kontogeorgis, G.M., Michelsen, M.L. and Stenby E.H. (2003) Extension of the cubic-plus-association equation of state to glycol-water cross-associating systems, Ind. Eng. Chem. Res., 42, 1470-1477. [CrossRef] [Google Scholar]
  • Dhima, A. (1998) Solubilité des gaz naturels dans l'eau à pression élevée, thèse de l'Université Lyon I Claude Bernard. [Google Scholar]
  • Donohue, M.D. and Prausnitz, J.M. (1978) Perturbed hard chain theory for fluid mixtures: thermodynamic properties for mixtures in natural gas and petroleum technology, AIChE J., 24, 849-860. [CrossRef] [Google Scholar]
  • Economou, I. (2002) Statistical Associating Fluid Theory: A successful model for the calculation of thermodynamic and phase equilibrium properties of complex mixtures, Ind. Eng. Chem. Res., 41, 953-962 [CrossRef] [Google Scholar]
  • Economou, I.G. and Donohue, M.D. (1992) Equation of state with multiple associating sites for water and water-hydrocarbon mixtures, Ind. Eng. Chem. Res., 31, 2388-2394 [CrossRef] [Google Scholar]
  • Economou, I.G. and Tsonopoulos, C. (1997) Associating models and mixing rules in equations of state for water-hydrocarbon mixtures, Chem. Eng. Sci., 52, 4, 511-525. [CrossRef] [Google Scholar]
  • Elliott, J.R.,Suresh, S.J. and Donohue, M.D. (1990) A simple equation of state for non-spherical and associating molecules, Ind. Eng. Chem. Res., 29, 7, 1476-1485. [CrossRef] [Google Scholar]
  • Flebbe, J.L.,Barclay, D.A. and Manley, D.B. (1982) J. Chem. Eng. Data, 27, 405-412. [CrossRef] [Google Scholar]
  • Florusse, L.J.,Peters, C.J.,Pamies, J.C.,Vega, L.F. and Meijer, H. (2003) Solubility of hydrogen in heavy n-alkanes: Experiment and SAFT modelling, AIChE.J., 49, 12, 3260-3269. [Google Scholar]
  • Fu, Y.H. and Sandler, K.E. (1995) A simplified SAFT equation of state for associating compounds and mixtures, Ind. Eng. Chem. Res., 34, 1897. [CrossRef] [Google Scholar]
  • Galindo, A.,Davies, L.A.,Gil-Villegas, A. and Jackson, G. (1998) The thermodynamics of mixtures and the corresponding mixing rules in the SAFT-VR approach for potentials of variable range, Mol. Phys., 93, 241. [CrossRef] [Google Scholar]
  • Galindo, A.,Whitehead, P.J. and Jackson, G. (1996) Predicting the high pressure phase equilibria of water + n-alkanes using a simplified SAFT theory with transferable intermolecular interaction parameters, J. Phys. Chem., 100, 6781. [CrossRef] [Google Scholar]
  • Galindo, A.,Whitehead, P.J.,Jackson, G. and Burgess, A.B. (1997) Predicting the phase equilibria of mixtures of hydrogen fluoride with water, difluoromethane, and tetrafluoroethane using a simplified SAFT approach, J. Phys. Chem., 101, 2082. [CrossRef] [Google Scholar]
  • Ghosh, A.,Chapman, W.G. and French, R.N. (2003) Gas solubility in hydrocarbons: a SAFT-based approach, Fluid Phase Equilibria, 209, 229-243. [CrossRef] [Google Scholar]
  • Gil-Villegas, A.,Galindo, A.,Whitehead, P.J.,Mills, S.J.,Jackson, G. and Burgess, A.N. (1997) Statistical Associating Fluid Theory for chain molecules with attractive potentials of variable range, J. Chem. Phys., 106, 4168. [CrossRef] [Google Scholar]
  • Gross, J. and Sadowski, G. (2000) Application of perturbation theory to a hard-chain reference fluid: an equation of state for square well chains, Fluid Phase Equilibria, 168, 183-199. [CrossRef] [Google Scholar]
  • Gross, J. and Sadowski, G. (2001) Perturbed-Chain SAFT: An equation of state based on a perturbation theory for chain molecules, Ind. Eng. Chem. Res., 40, 1244-1260. [CrossRef] [Google Scholar]
  • Gubbins, K.E. and Twu, C.H. (1978) Thermodynamics of polyatomic fluid mixtures -1 Theory, Chem. Eng. Sci., 33, 863-878. [CrossRef] [Google Scholar]
  • Huang, S.H. and Radosz, M. (1990) Equation of state for small, large, polydisperse and associating molecules, Ind. Eng. Chem. Res., 29, 2284-2294. [CrossRef] [Google Scholar]
  • Huron, M.J. and Vidal, J. (1979) New mixing rules in simple equations of state for representing vapour-liquid equilibria of strongly non-ideal mixtures, Fluid Phase Equilibria, 3, 255-271. [CrossRef] [Google Scholar]
  • Ikonomou, G.D. and Donohue, M.D. (1986) Thermodynamics of hydrogen-bonded molecules: The associated perturbed anisotropic chain theory, AIChE J. , 32, 10, 1716-1725. [Google Scholar]
  • Ishihara, K.,Tanaka, H. and Kato, M. (1998) Phase equilibrium properties of ethane + methanol system at 298.15 K, Fluid Phase Equilibria, 144, 131-136. [CrossRef] [Google Scholar]
  • Kim, C.H.,Vilmachand, P.,Donohue, M.D. and Sandler, S.I. (1986) Local composition model for chainlike molecules: a new simplified version perturbed hard chain theory, AIChE J., 32, 1726-1734. [CrossRef] [Google Scholar]
  • Kontogeorgis, E.,Yakoumis, I.,Meijer, H.,Hendriks, E. and Moorwood, T. (1999) Multicomponent phase equilibrium calculations for water - methanol - alkane mixtures, Fluid Phase Equilibria., 158-60, 201-209. [CrossRef] [Google Scholar]
  • Kontogeorgis, G.M.,Voutsas, E.,Yakoumis, I. and Tassios, D.P. (1996) An equation of state for associating fluids, Ind. Eng. Chem. Res., 35, 4310-4318. [CrossRef] [Google Scholar]
  • Kraska, T. and Gubbins, K.E. (1996a) Phase equilibria calculations with a modified SAFT equation of state, Fluid Phase Equilibria, 35, 4727-4737. [Google Scholar]
  • Kraska, T. and Gubbins, K.E. (1996b)Phase equilibria calculations with a modified SAFT equation of state: 2.Binary mixtures of n-alkanes, 1-alcohols and water, Fluid Phase Equilibria, 35, 4738-4746. [Google Scholar]
  • Lee, L.L. (1988) Molecular Thermodynamics of NonIdeal Fluids, Butterworths Publishers. [Google Scholar]
  • Ma, Y.H. and Kohn, J.P. (1964) Multiphase and volumetric equilibria of the ethane-methanol system at temperatures between -40 Formula C and 100 Formula C, J. Chem. Eng., 9, 3-5. [Google Scholar]
  • Mattedi, S.,Tavares, F.W. and Castier, M. (1998) Fluid Phase Equilibria, 142, 33. [CrossRef] [Google Scholar]
  • Michelsen, M.L. (1990) A modified Huron-Vidal mixing rule for cubic equations of state, Fluid Phase Equilibria, 60, 213-219. [Google Scholar]
  • Michelsen, M.L. and Hendricks, E. (2001) Physical Properties from Association Models, Fluid Phase Eq., 180, 165-174. [CrossRef] [Google Scholar]
  • Muller, E.A., Gubbins, K.E., 2001, Molecular-based equations of state for associating fluids: A review of SAFT and related approaches, Ind. Eng. Chem. Res., 40, 2193-2211. [Google Scholar]
  • Murray, R.S. and Martin, M.L. (1975) J. Chem. Thermodynamics, 7, 839. [CrossRef] [Google Scholar]
  • Péneloux, A.,Abdoul, W. and Rauzy, E. (1989) Excess functions and equations of state, Fluid Phase Equilibria, 47, 115-132. [CrossRef] [Google Scholar]
  • Péneloux, A.,Rauzy, E. and Frèze, R. (1982) A consistent correction for Redlich-Kwong-Soave volumes, Fluid Phase Equilibria, 8, 7-23. [CrossRef] [Google Scholar]
  • Peng, D-Y. and Robinson, D.B. (1976) A new two-constant equation of state, Ind. Eng. Chem. Fundam., 15, 59-64. [CrossRef] [Google Scholar]
  • Prigogine, I. (1957) The Molecular Theory of Solutions, North- Holland, Amsterdam. [Google Scholar]
  • Redlich, O. and Kwong, J.N.S. (1949) On the thermodynamics of solutions: V An equation of state ; fugacities of gaseous solutions, Chem. Rev., 44, 233-244. [Google Scholar]
  • Rossihol, N. (1995) Equilibres de phases à basse température de mélanges d'hydrocarbures légers, de méthanol et d'eau: mesure et modélisation, thèse de l'Université Lyon I Claude Bernard. [Google Scholar]
  • Soave, G. (1972) Equilibrium constants for a modified Redlich-Kwong equation of state, Chem. Eng. Sci, 27, 1197-1203. [Google Scholar]
  • Soreide I. and Whitson C. (1992) Peng - Robinson predictions for hydrocarbons, CO2, N2, H2S with pure water and NaCl brine, Fluid Phase Equilibria, 77, 217. [CrossRef] [Google Scholar]
  • Stell, G.,Rasaiah, J.C. and Narang, H. (1974) Mol. Phys., 27, 1393 [CrossRef] [Google Scholar]
  • Surovy, J. and Heinrich, J. (1966) Sb. Pr. Chem. Fak. Svst, 201 [Google Scholar]
  • Suresh S. and Elliot J. (1991) Multiphase equilibrium analysis via a generalized equation of state, Ind. Eng. Chem. Res., 31, 2783-2794. [CrossRef] [Google Scholar]
  • Tamouza, S.,Passarello, J.-P.,Tobaly, P. and de Hemptinne, J.-C. (2004) Group contribution method with SAFT EOS applied to vapor liquid equilibria of various hydrocarbon series, Fluid Phase Equilibria, 222-223, 67-76. [CrossRef] [Google Scholar]
  • Tamouza, S. (2004) PhD Thesis. [Google Scholar]
  • Tamouza, S., Passarello, J.-P., Tobaly, P. and de Hemptinne, J-C. (2005) Application to binary mixtures of a group contribution SAFT EOS (GC-SAFT), Fluid Phase Eq., 228-229C, 409-419. [Google Scholar]
  • Ting, P.D.,Hirasaki, G.J. and Chapman, W. (2003) Modeling of asphaltene phase behaviour with the SAFT equation of state, Pet. Sci. Tech., 21, 3&4, 647-661. [Google Scholar]
  • Twu, C.H.,Coon, J.E. and Cunningham, J.R. (1995) A new generalized alfa function for a cubic equation of state. Part I. Peng-Robinson equation, Fluid Phase Equilibria, 105, 49-59. [CrossRef] [Google Scholar]
  • Ungerer, P. and Batut, C. (1997) Prédiction des propriétés volumétriques des hydrocarbures par une translation de volume améliorée, Revue de l'Institut Français du Pétrole, 56, 6, 609-623. [CrossRef] [EDP Sciences] [Google Scholar]
  • Van der Waals (1873) The equation of state for gases and liquids, Nobel Lectures in Physics, 1, 254-265, Elsevier, Amsterdam (1967). [Google Scholar]
  • Vimalchand, P. and Donohue, M.D. (1985) Thermodynamics of quadrupolar molecules: The perturbed anisotropic chain theory, Ind. Eng. Chem. Fundam., 24, 246. [CrossRef] [Google Scholar]
  • Voutsas, E.,Kontogeoris, G.,Yakoumis, I.V. and Tassios, D.P. (1997) Correlation of liquid-liquid equilibria for alcohol/ hydrocarbon mixtures using the CPA equation of state, Fluid Phase Equilibria, 132, 61-75. [CrossRef] [Google Scholar]
  • Voutsas, E.C.,Boulougouris, G.C.,Economou, I.G. and Tassios, D.P. (2000) water/hydrocarbon phase equilibria using the thermodynamic perturbation theory, Ind. Eng. Chem. Res., 39, 797-804. [CrossRef] [Google Scholar]
  • von Solms, N.,Michelsen, M.L. and Kontogeorgis, G.M. (2003) Computational and Physical Performance of a Modified PCSAFT Equation of State for Highly Asymmetric and Associating Mixtures, Ind. Eng. Chem. Res., 42, 5, 1098-1105. [CrossRef] [Google Scholar]
  • Wei, Y.S. and Sadus, R.J. (2000) Equation of state for the calculation of fluid phase equilibria, AIChE J., 46, 1, 169. [CrossRef] [MathSciNet] [Google Scholar]
  • Wendland, M.,Saleh, B. and Fischer, J. (2004) Accurate thermodynamic properties from the BACKONE equation for the processing of natural gas, Energy & Fuels, 18, 4, 938-951. [CrossRef] [Google Scholar]
  • Wertheim, M.S. (1986) Fluids with highly directional attractive forces, J. Stat. Phys., 35, 35. [CrossRef] [MathSciNet] [Google Scholar]
  • Wong, D.S.H.,Orbey, H. and Sandler, S.I. (1992) Equation of state mixing rule for non ideal mixtures using available activity coefficient model parameters and that allows extrapolation over large ranges of temperatures and pressures, Ind. Eng. Chem. Res., 31, 2033. [CrossRef] [Google Scholar]
  • Yakoumis, I.V.,Kontogeorgis, G.M.,Voutsas, E.C.,Hendricks, E.M. and Tassios, D.P. (1998) Prediction of phase in binary aqueous systems containing alkanes, cycloalkanes, and alkenes with the Cubic-Plus-Association equation of state, Ind. Eng. Chem. Res., 37, 4175-4182. [CrossRef] [Google Scholar]
  • Zeck, S. and Knapp, H. (1986) Vapor-liquid and vapour-liquidliquid phase equilibria for binary and ternary systems of nitrogen, ethane and methanol: experiment and data reduction, Fluid Phase Equilibria, 25, 303-322. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.