Dossier: Recent Developments in the Field of Automotive Engines and their After-Treatment
Open Access
Numéro
Oil & Gas Science and Technology - Rev. IFP
Volume 58, Numéro 1, January-February 2003
Dossier: Recent Developments in the Field of Automotive Engines and their After-Treatment
Page(s) 47 - 62
DOI https://doi.org/10.2516/ogst:2003004
Publié en ligne 1 décembre 2006
  • Habchi, C. and Torres, A. (1992) A 3D Multi-block Structured Version of the KIVA 2 code. Proceedings of the First European CFD conference, 502-512. [Google Scholar]
  • Torres, A. and Henriot, S. (1994) 3D Modelling of Combustion in Lean Burn 4-Valve Engines: Influence of Intake Configuration. International Symposium COMODIA, 151-156. [Google Scholar]
  • Amsden, A.A., O’Rourke, P.J. and Butler, T.D. ((1989) KIVA2: A Computer Program for Chemically Reactive Flows with Sprays. Report LA-11560-MS, Los Alamos National Laboratories. [Google Scholar]
  • Marble, F.E. and Broadwell, J.E. (1977) The Coherent Flame Model for Turbulent Chemical Reactions. Purdue University Technical Report TRW. [Google Scholar]
  • Candel, S. and Poinsot, T. (1990) Flame Stretch and the Balance Equation for the Flame Area. Combustion Science and Technology, 70, 1-15. [CrossRef] [Google Scholar]
  • Boudier, P., Henriot, S., Poinsot, T. and Baritaud, T. (1992) A Model for Turbulent Flame Ignition and Propagation in Piston Engines. 24th Symposium (International) on Combustion, The Combustion Institute. [Google Scholar]
  • Duclos, J.M., Bruneaux, G. and Baritaud, T. (1996) 3D Modelling of Combustion and Pollutants in a 4valve SI Engine: Effect of Fuel and Residuals Distribution and Spark Location. SAE Paper 961964. [Google Scholar]
  • Duclos, J.M. (1999) Modélisation 3D de la combustion en IDE. Modélisation de l’initiation et couplage du CFM avec le modèle d’injection. Technical Report 45215, IFP. [Google Scholar]
  • Meneveau, C. and Poinsot, T. (1991) Stretching and Quenching of Flamelets in Premixed Turbulent Combustion. Combust. Flame, 86, 311-332. [CrossRef] [Google Scholar]
  • Duclos, J.M. and Zolver, M. (1998) 3D modeling of Intake, Injection and Combustion in a DI-SI Engine under Homogeneous and Stratified Operating Conditions. COMODIA, 335-340. [Google Scholar]
  • Lafossas, F.A., Castagne, M., Dumas, J.P. and Henriot, S. (2002) Development and Validation of a Knock Model in Spark Ignition Engines Using a CFD code. SAE Paper 2002-01-2701. [Google Scholar]
  • Metghalchi, M. and Keck, J. C. (1982) Burning Velocities of Mixtures of Air with Methanol, iso-octane and indolene at High Pressure and Temperature. Combust. Flame, 48, 191-210. [CrossRef] [Google Scholar]
  • GM Res. Lab. Report GMRL-4361 [Google Scholar]
  • Colin, O. and Benkenida, A. (2002) Modélisation de la combustion en injection directe essence. Technical Report 56687, IFP. [Google Scholar]
  • Colin, O. and Benkenida, A. (2002) A New Scalar Fluctuation Model to Predict Mixing in Two Phase Flows with Evaporation. Submitted to Combustion and Flame. [Google Scholar]
  • Demoulin, F.X. and Borghi, R. (2002) Modeling of Turbulent Spray Combustion with Application to Diesel Like Experiment. Combustion and Flame, 129, 281-293. [CrossRef] [Google Scholar]
  • Barths, H., Antony, C. and Peters, N. (1998) Three Dimensional Simulation of Pollutant Formation in a Diesel Engine Using Multiple Interactive Flamelets. SAE Paper 98-2459. [Google Scholar]
  • Dekena, M. and Peters N. (1999) Combustion Modelling with the G-Equation. Oil & Gas Sci. & Tech., 54, 265-270. [CrossRef] [EDP Sciences] [Google Scholar]
  • Pires da Cruz, A., Baritaud, T. and Poinsot, T. (1999) Turbulent Self Ignition and Combustion Modelling in Diesel Engines. SAE Paper 1999-01-1176. [Google Scholar]
  • Beguier, C.,Dekeyser, J. and Launder, B.E. (1978) Ratio of Scalar and Velocity Dissipation Time Scales in Shear Flow Turbulence. Phys. Fluids, 21, 307-310. [CrossRef] [Google Scholar]
  • Zeman, O. and Lumley, J.L. (1976) Modeling Buoyancy- Driven Mixed Layers. J. Atmos. Sci., 33, 1974-1988. [CrossRef] [Google Scholar]
  • Newman, G. R.,Launder, B.E. and Lumley, J.L. (1981) Modelling the Behaviour of Homogeneous Scalar Turbulence. J. Fluid Mech., 111, 217-232. [CrossRef] [MathSciNet] [Google Scholar]
  • Dibble, R.W., Kollmann, W. and Schefer, R.W. (1984) Measurements and Predictions of Scalar Dissipation in Turbulent Jet Flames, 20th Symposium on Combustion, Pittsburgh, 345-352. [Google Scholar]
  • Mantel, T. and Borghi, R. (1994) A New Model of Premixed Wrinkled Flame Propagation Based on a Scalar Dissipation Equation. Combust. Flame, 96, 443-457. [CrossRef] [Google Scholar]
  • Duclos, J.M. and Colin, O. (2001) Arc and Kernel Tracking Ignition Model for 3D Spark-Ignition Engine Calculations. COMODIA, 343-350. [Google Scholar]
  • Guibet, J.C. (1997) Les essences. In Carburants et Moteurs, Ȥitions Technip (2nd ed.), Paris. [Google Scholar]
  • Henriot, S.,Chaouche, A.,Chevé, E. and Duclos, J.M. (1999) CFD Aided Development of a SI-DI Engine. Oil & Gas Sci. & Tech., 54, 279-286. [CrossRef] [EDP Sciences] [Google Scholar]
  • Castagné, M., Chevé, E., Dumas, J.P. and Henriot, S. (2000) Advanced Tools for Analysis of Gasoline Direct Injection Engines. SAE Paper 2000-01-1903. [Google Scholar]
  • Le Coz, J.F, Cherel, J. and LeMirronet, S. (2002) Fuel/Air Mixing Process and Combustion in an Optical Direct- Injection Engine. Oil & Gas Sci. & Tech., 58, 1. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.