Dossier: Recent Developments in the Field of Automotive Engines and their After-Treatment
Open Access
Numéro
Oil & Gas Science and Technology - Rev. IFP
Volume 58, Numéro 1, January-February 2003
Dossier: Recent Developments in the Field of Automotive Engines and their After-Treatment
Page(s) 33 - 46
DOI https://doi.org/10.2516/ogst:2003003
Publié en ligne 1 décembre 2006
  • Amsden, A.A., O’Rourke, P.J. and Butler, T.D. (1989) KIVA-II, A Computer Program for Chemically Reactive Flows with Sprays. Report LA-11560-MS, Los Alamos National Laboratory. [Google Scholar]
  • Angelberger, C., Poinsot and T., Delhaye, B. (1997) Improving Near-Wall Combustion and Wall Heat Transfer Modeling in SI Engine Computations. SAE Paper 972881. [Google Scholar]
  • Baritaud, T. (1989) Combustion and Fluid Dynamic Measurements in a Spark Ignition Engine: Effects of Thermochemistry and Velocity Fields; Turbulent Flame Speed. SAE Paper 892098. [Google Scholar]
  • Beard, P., Duclos, J.M., Habchi, C., Bruneaux, G.,Mokkadem, K and Baritaud, T. (2000) Extension of Lagrangian-Eulerian Spray Modeling: Application to High Pressure Evaporating Diesel Sprays. SAE Paper 2000-01-1893. [Google Scholar]
  • Colin, O.,Benkenida, A. and Angelberger, C. (2003) A 3D Modelling of Mixing, Ignition and Combustion Phenomena in Highly Stratified Gasoline Engines. Oil & Gas Science and Technology – Rev. IFP, 58, 1, 47-62. [CrossRef] [EDP Sciences] [Google Scholar]
  • Duclos, J.M. and Zolver, M. (1998) 3D Modeling of Intake, Injection and Combustion in a DI-SI Engine under Homogeneous and Stratified Operating Condition. COMODIA 1998. [Google Scholar]
  • Duclos, J.M.,Zolver, M. and Baritaud, T. (1999) 3D Modeling of Combustion for DI-SI Engines. Oil & Gas Science and Technology - Rev. IFP, 54, 2, 259-264. [CrossRef] [EDP Sciences] [OGST] [Google Scholar]
  • Duclos J-M. and Colin O. (2001) Arc Kernel Tracking Ignition Model for 3D Spark-Ignition Engine Calculations. Paper (2-25), COMODIA 2001. [Google Scholar]
  • Gresho, P.M. (1990) On The Theory of Semi-Implicit Projection Methods for Viscous Incompressible Flow and its Implementation via a Finite Element Method that also Introduces a Nearly Consistent Mass Matrix, Part 2: Applications. Int. Journal Of Numerical Methods for Fluids, 11, 621. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  • Habchi, C. and Torres, A. (1992) A 3D Multi-Block Structured Version of the KIVA-II Code. First European CFD Conference Proceedings, 502-512. [Google Scholar]
  • Heel, H., Maly, R., Weller, H.G. and Gosman A.D. (1998) Validation of SI Combustion Model over Range of Speed, Load, Equivalence Ratio and Spark Timing. COMODIA 1998. [Google Scholar]
  • Henriot, S., Chaouche, A., Cheve, E., Duclos, J.M., Leduc, P., Menegazzi, P., Monnier, G. and Ranini, A. (1999) NSDI-3: A Small Bore GDI Engine. SAE Paper 1999-01-0172. [Google Scholar]
  • Heywood, J.B. (1988) Internal Combustion Engines Fundamentals, Mc Graw Hill Publication, 1988. http://www.openmp.org [Google Scholar]
  • Leveque, R.J. (1992) Numerical Methods for Conservation Laws. Lectures in Mathematics, ETH Zürich, Birkhäuser Verlag. [Google Scholar]
  • O’Rourke, P.J. and Amsden, A.A. (1986) Implementation of a Conjugate Residual Iteration in the KIVA Computer Program. Report LA-10849-MS, Los Alamos National Laboratory. [Google Scholar]
  • O’Rourke, P.J. and Sahota, M.S. (1998) A Variable Explicit/Implicit Method for calculating Advection on Unstructured Meshes. Journal of Computational Physics, 143, 312-345. [CrossRef] [MathSciNet] [Google Scholar]
  • O’Rourke, P.J.,Zhang, S. and Sahota, M.S. (1999) A Parallel, Unstructured-Mesh Methodology for Device-Scale Combustion Calculations. Oil & Gas Science and Technology – Rev. IFP, 54, 2, 169-173. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • Patankar, S.V. (1980) Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corp., Washington D.C. [Google Scholar]
  • Sinha, N., Cavallo, P.A., Lee, R.A., Hosangadi, A., Kenzakowski, D.C, Dash, S.M, Affes, H, and Chu, D. (1998) Novel CFD Techniques for In-Cylinder Flows on Tetrahedral Grids. SAE Paper 980138. [Google Scholar]
  • Tatschl, R., Gabriel, H.P. and Priesching, P. (2001) FIRE – A Genetic CFD Platform for DID Engine Mixture Formation and Combustion Simulation. 11th International Multidimensional Engine Modeling User’s Group Meeting at the SAE Congress. [Google Scholar]
  • Torres, A. and Henriot, S. (1994) 3D Modeling of Combustion in Lean Burn Four-Valve Engines: Influence of Intake Configuration. COMODIA 1994. [Google Scholar]
  • Torres, A. and Henriot, S. (1996) Modeling the Effects of EGR Inhomogeneities Induced by Intake Systems in a Four-Valve Engine, SAE Paper 961959. [Google Scholar]
  • Zolver, M., Torres, A. and Klahr, D. (2001) CFD and Combustion in Engines with an Unstructured Parallel Solver Based on KIVA. Paper (1-14), COMODIA 2001. [Google Scholar]
  • Zolver, M., Klahr, D. and Torres, A. (2002) An Unstructured Parallel Solver for Engine Intake and Combustion Stroke Simulation. SAE Paper 2002-01-1120. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.