Dossier: Recent Developments in the Field of Automotive Engines and their After-Treatment
Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP
Volume 58, Number 1, January-February 2003
Dossier: Recent Developments in the Field of Automotive Engines and their After-Treatment
Page(s) 47 - 62
DOI https://doi.org/10.2516/ogst:2003004
Published online 01 December 2006
  • Habchi, C. and Torres, A. (1992) A 3D Multi-block Structured Version of the KIVA 2 code. Proceedings of the First European CFD conference, 502-512. [Google Scholar]
  • Torres, A. and Henriot, S. (1994) 3D Modelling of Combustion in Lean Burn 4-Valve Engines: Influence of Intake Configuration. International Symposium COMODIA, 151-156. [Google Scholar]
  • Amsden, A.A., O’Rourke, P.J. and Butler, T.D. ((1989) KIVA2: A Computer Program for Chemically Reactive Flows with Sprays. Report LA-11560-MS, Los Alamos National Laboratories. [Google Scholar]
  • Marble, F.E. and Broadwell, J.E. (1977) The Coherent Flame Model for Turbulent Chemical Reactions. Purdue University Technical Report TRW. [Google Scholar]
  • Candel, S. and Poinsot, T. (1990) Flame Stretch and the Balance Equation for the Flame Area. Combustion Science and Technology, 70, 1-15. [CrossRef] [Google Scholar]
  • Boudier, P., Henriot, S., Poinsot, T. and Baritaud, T. (1992) A Model for Turbulent Flame Ignition and Propagation in Piston Engines. 24th Symposium (International) on Combustion, The Combustion Institute. [Google Scholar]
  • Duclos, J.M., Bruneaux, G. and Baritaud, T. (1996) 3D Modelling of Combustion and Pollutants in a 4valve SI Engine: Effect of Fuel and Residuals Distribution and Spark Location. SAE Paper 961964. [Google Scholar]
  • Duclos, J.M. (1999) Modélisation 3D de la combustion en IDE. Modélisation de l’initiation et couplage du CFM avec le modèle d’injection. Technical Report 45215, IFP. [Google Scholar]
  • Meneveau, C. and Poinsot, T. (1991) Stretching and Quenching of Flamelets in Premixed Turbulent Combustion. Combust. Flame, 86, 311-332. [CrossRef] [Google Scholar]
  • Duclos, J.M. and Zolver, M. (1998) 3D modeling of Intake, Injection and Combustion in a DI-SI Engine under Homogeneous and Stratified Operating Conditions. COMODIA, 335-340. [Google Scholar]
  • Lafossas, F.A., Castagne, M., Dumas, J.P. and Henriot, S. (2002) Development and Validation of a Knock Model in Spark Ignition Engines Using a CFD code. SAE Paper 2002-01-2701. [Google Scholar]
  • Metghalchi, M. and Keck, J. C. (1982) Burning Velocities of Mixtures of Air with Methanol, iso-octane and indolene at High Pressure and Temperature. Combust. Flame, 48, 191-210. [CrossRef] [Google Scholar]
  • GM Res. Lab. Report GMRL-4361 [Google Scholar]
  • Colin, O. and Benkenida, A. (2002) Modélisation de la combustion en injection directe essence. Technical Report 56687, IFP. [Google Scholar]
  • Colin, O. and Benkenida, A. (2002) A New Scalar Fluctuation Model to Predict Mixing in Two Phase Flows with Evaporation. Submitted to Combustion and Flame. [Google Scholar]
  • Demoulin, F.X. and Borghi, R. (2002) Modeling of Turbulent Spray Combustion with Application to Diesel Like Experiment. Combustion and Flame, 129, 281-293. [CrossRef] [Google Scholar]
  • Barths, H., Antony, C. and Peters, N. (1998) Three Dimensional Simulation of Pollutant Formation in a Diesel Engine Using Multiple Interactive Flamelets. SAE Paper 98-2459. [Google Scholar]
  • Dekena, M. and Peters N. (1999) Combustion Modelling with the G-Equation. Oil & Gas Sci. & Tech., 54, 265-270. [CrossRef] [EDP Sciences] [Google Scholar]
  • Pires da Cruz, A., Baritaud, T. and Poinsot, T. (1999) Turbulent Self Ignition and Combustion Modelling in Diesel Engines. SAE Paper 1999-01-1176. [Google Scholar]
  • Beguier, C.,Dekeyser, J. and Launder, B.E. (1978) Ratio of Scalar and Velocity Dissipation Time Scales in Shear Flow Turbulence. Phys. Fluids, 21, 307-310. [CrossRef] [Google Scholar]
  • Zeman, O. and Lumley, J.L. (1976) Modeling Buoyancy- Driven Mixed Layers. J. Atmos. Sci., 33, 1974-1988. [CrossRef] [Google Scholar]
  • Newman, G. R.,Launder, B.E. and Lumley, J.L. (1981) Modelling the Behaviour of Homogeneous Scalar Turbulence. J. Fluid Mech., 111, 217-232. [CrossRef] [MathSciNet] [Google Scholar]
  • Dibble, R.W., Kollmann, W. and Schefer, R.W. (1984) Measurements and Predictions of Scalar Dissipation in Turbulent Jet Flames, 20th Symposium on Combustion, Pittsburgh, 345-352. [Google Scholar]
  • Mantel, T. and Borghi, R. (1994) A New Model of Premixed Wrinkled Flame Propagation Based on a Scalar Dissipation Equation. Combust. Flame, 96, 443-457. [CrossRef] [Google Scholar]
  • Duclos, J.M. and Colin, O. (2001) Arc and Kernel Tracking Ignition Model for 3D Spark-Ignition Engine Calculations. COMODIA, 343-350. [Google Scholar]
  • Guibet, J.C. (1997) Les essences. In Carburants et Moteurs, Ȥitions Technip (2nd ed.), Paris. [Google Scholar]
  • Henriot, S.,Chaouche, A.,Chevé, E. and Duclos, J.M. (1999) CFD Aided Development of a SI-DI Engine. Oil & Gas Sci. & Tech., 54, 279-286. [CrossRef] [EDP Sciences] [Google Scholar]
  • Castagné, M., Chevé, E., Dumas, J.P. and Henriot, S. (2000) Advanced Tools for Analysis of Gasoline Direct Injection Engines. SAE Paper 2000-01-1903. [Google Scholar]
  • Le Coz, J.F, Cherel, J. and LeMirronet, S. (2002) Fuel/Air Mixing Process and Combustion in an Optical Direct- Injection Engine. Oil & Gas Sci. & Tech., 58, 1. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.