Capillarity in Porous Media: Recent Advances and Challenges
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
Capillarity in Porous Media: Recent Advances and Challenges
Article Number 73
Number of page(s) 7
DOI https://doi.org/10.2516/ogst/2021057
Published online 24 November 2021
  • Maugeri L. (2004) Oil: Never cry wolf. Why the petroleum age is far from over, Science 304, 1114–1115. [Google Scholar]
  • Morrow N.R. (1990) Wettability and its effect on oil recovery, J. Pet. Tech. 42, 1476–1484. [Google Scholar]
  • Ivanova A., Mitiurev N., Cheremisin A., Orekhov A., Vasiliev A., Hairullin M., Afanasiev I. (2018) Direct wettability characterization of the carbonate reservoirs using different microscopic techniques, in: 80th EAGE Conference and Exhibition, June 11–14, 2018, Copenhagen, Denmark, pp. 1–5. [Google Scholar]
  • Schmatz J., Urai J.L., Berg S., Ott H. (2015) Nanoscale imaging of pore-scale fluid-fluid-solid contacts in sandstone, Geophys. Res. Lett. 42, 2189–2195. [Google Scholar]
  • Mahani H., Keya A.L., Berg S., Bartels W.-B., Nasralla R., Rossen W.R. (2015) Insights into the mechanism of wettability alteration by low-salinity flooding (LSF) in carbonates, Energy Fuels 29, 1352–1367. [Google Scholar]
  • Iglauer S. (2017) CO2–water–rock wettability: Variability, influencing factors, and implications for CO2 geostorage, Acc. Chem. Res. 50, 1134–1142. [Google Scholar]
  • Karymov M., Prochazka K., Mendenhall J., Martin T., Munk P., Webber S. (1996) Chemical attachment of polystyrole-block-poly(methacrylic acid) micelles on a silicon nitride surface, Langmuir 12, 20, 4748–4753. [Google Scholar]
  • Karymov M., Tomschik M., Leuba S., Caiafa P., Zlatanova J. (2001) DNA methylation-dependent chromatin fiber compaction in vivo and in vitro: requirement for linker histone, Fasseb J. 15, 14, 2631–2641. [Google Scholar]
  • Mori O., Imae T. (1997) AFM investigation of the adsorption process of bovine serum albumin on mica, Colloids Surf. B 9, 31–36. [Google Scholar]
  • Pericet-Camara R., Papastavrou G., Borkovec M. (2004) Atomic force microscopy study of the adsorption and electrostatic self-organization of poly(amidoamine) dendrimers in mica, Langmuir 20, 3264–3270. [Google Scholar]
  • Javadpour F., Farshi M.M., Amrein M. (2012) Atomic-force microscopy: A new tool for gas- shale characterization, J. Can. Pet. Technol. 51, 04, 236–243. SPE 161015. [Google Scholar]
  • Liu K., Ostadhassan M., Jabbari H., Bubach B. (2016) Potential application of atomic force microscopy in characterization of nano-pore structures of Bakken formation, in: Low Perm Symposium, 5–6 May 2016, Denver, Colorado, USA. SPE-180276- MS SPE. [Google Scholar]
  • Leite F.L., Bueno C.Cc, Da Roz A.L., Ziemath E.C., Oliveira O.N. (2012) Theoretical models for surface forces and adhesion and their measurement using atomic force microscopy, Int. J. Mol. Sci. 13, 12773–12856. [Google Scholar]
  • Yin X., Miller J.D. (2012) Wettability of kaolinite basal planes based on surface force measurements using atomic force microscopy, Miner 29, 1. [Google Scholar]
  • Seiedi O., Rahbar M., Nabipour M., Emadi M., Ghatee M., Ayatollahi S. (2011) Atomic force microscopy (AFM) investigation on the surfactant wettability alteration mechanism of aged mica mineral surfaces, Energy Fuels 25, 183–188. [Google Scholar]
  • Hassenkam T., Skovbjerg L.L., Stipp S.L.S. (2009) Probing the intrinsically oil-wet surfaces of pores in North Sea chalk at subpore resolution, PNAS 106, 15, 6071–6076. [Google Scholar]
  • Deng Y., Xu L., Lu H., Wang H., Shi Y. (2018) Direct measurement of the contact angle of water droplet on quartz in a reservoir rock with atomic force microscopy, Chem. Eng. Sci. 177, 445–454. [Google Scholar]
  • Ivanova A., Mitiurev N., Cheremisin A., Orekhov A., Kamyshinsky R., Vasiliev A. (2019) Characterization of organic layer in oil carbonate reservoir rocks and its effect on microscale wetting properties, Sci. Rep. 9, 10667. [Google Scholar]
  • Yesufu-Rufai S., Marcelis F., Georgiadis A., Berg S., Rucker M., van Wunnik J., Luckham P. (2020) Atomic Force Microscopy (AFM) study of redox conditions in sandstones: Impact of wettability modification and mineral morphology, Colloids Surf. A 597, 124765. [Google Scholar]
  • Kumar K., Dao E., Mohanty K.K. (2005) AFM study of mineral wettability with reservoir oils, J Colloid Interface Sci 289, 206–217. [Google Scholar]
  • Sedin D., Rowlen K. (2000) Adhesion forces measured by atomic force microscopy in humid air, Anal. Chem. 72, 2183–2189. [Google Scholar]
  • Jones R., Pollock H., Cleaver J., Hodges C. (2002) Adhesion forces between glass and silicon surfaces in air studied by AFM: Effects of relative humidity, particle size, roughness and surface treatment, Langmuir 18, 8045–8055. [Google Scholar]
  • Mitiurev N., Verrall M., Ivanova A., Keshavarz A., Iglauer S. (2021) Sample preparation for rock wettability studies via atomic force microscopy, APPEA J. 61, 1, 216–223. [Google Scholar]
  • Fisher L., Israelachvili J. (1981) Experimental studies on the applicability of the Kelvin equation to highly curved concave menisci, J. Colloid Interface Sci. 80, 528–541. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.