Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
Article Number 74
Number of page(s) 8
Published online 01 December 2021
  • Canan A., Calhan R., Ozkaymak M. (2021) Investigation of the effects of different slags as accelerant on anaerobic digestion and methane yield, Biomass Conv. Bioref. 11, 1395–1406. [CrossRef] [Google Scholar]
  • Rajak U., Nashine P., Verma T.N. (2020) Effect of spirulina microalgae biodiesel enriched with diesel fuel on performance and emission characteristics of CI engine, Fuel 268, 117305. [CrossRef] [Google Scholar]
  • Simsek S., Uslu S., Simsek H., Uslu G. (2021) Improving the combustion process by determining the optimum percentage of liquefied petroleum gas (LPG) via response surface methodology (RSM) in a spark ignition (SI) engine running on gasoline-LPG blends, Fuel Process. Technol. 221, 106947. [CrossRef] [Google Scholar]
  • Biswal A., Kale R., Balusamy S., Banerjee R., Pankaj K. (2019) Lemon peel oil as an alternative fuel for GDI engines: A spray characterization perspective, Renew. Energy 142, 249–263. [CrossRef] [Google Scholar]
  • Simsek S., Uslu S. (2020) Determination of a diesel engine operating parameters powered with canola, safflower and waste vegetable oil based biodiesel combination using response surface methodology (RSM), Fuel 270, 117496. [CrossRef] [Google Scholar]
  • Mujtaba M.A., Kalam M.A., Masjuki H.H., Gul M., Soudagar M.E.M., Ong H.C., Ahmed W., Atabani A.E., Razzaq L., Yusoff M. (2020) Comparative study of nanoparticles and alcoholic fuel additives-biodiesel-diesel blend for performance and emission improvements, Fuel 279, 118434. [CrossRef] [Google Scholar]
  • Zhen X., Wang Y., Liu D. (2020) Bio-butanol as a new generation of clean alternative fuel for SI (spark ignition) and CI (compression ignition) engines, Renew. Energy 147, 1, 2494–2521. [CrossRef] [Google Scholar]
  • Yesilyurt M.K., Aydin M. (2020) Experimental investigation on the performance, combustion and exhaust emission characteristics of a compression-ignition engine fueled with cottonseed oil biodiesel/diethyl ether/diesel fuel blends, Energy Conv. Manage. 205, 112355. [CrossRef] [Google Scholar]
  • Sun C.S., Liu Y., Qiao X., Ju D., Tang Q., Fang X., Zhou F. (2020) Experimental study of effects of exhaust gas recirculation on combustion, performance, and emissions of DME-biodiesel fueled engine, Energy 197, 1172333. [Google Scholar]
  • Simsek S., Uslu S., Coştu R. (2021) A novel approach to study the effect of motor silk-added pyrolysis tire oil on performance and emission characteristics of a diesel engine, Fuel 288, 119668. [CrossRef] [Google Scholar]
  • Jagtap S.P., Pawar A.N., Lahane S. (2020) Improving the usability of biodiesel blend in low heat rejection diesel engine through combustion, performance and emission analysis, Renew. Energy 155, 628–644. [CrossRef] [Google Scholar]
  • Fayad M.A., Tsolakis A., Martos F.J. (2020) Influence of alternative fuels on combustion and characteristics of particulate matter morphology in a compression ignition diesel engine, Renew. Energy 149, 962–969. [CrossRef] [Google Scholar]
  • Vohra K., Vodonos A., Schwartz J., Marais E.A., Sulprizio M.P., Mickley L.J. (2021) Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-Chem, Environ. Res. 195, 110754. [CrossRef] [Google Scholar]
  • Xiao H., Guo F., Wang R., Yang X., Li S., Ruan J. (2020) Combustion performance and emission characteristics of diesel engine fueled with iso-butanol/biodiesel blends, Fuel 268, 117387. [CrossRef] [Google Scholar]
  • Simsek S., Uslu S. (2020) Investigation of the effects of biodiesel/2-ethylhexyl nitrate (EHN) fuel blends on diesel engine performance and emissions by response surface methodology (RSM), Fuel 275, 118005. [CrossRef] [Google Scholar]
  • Yılmaz E. (2019) Investigation of the effects of diesel-fusel oil fuel blends on combustion, engine performance and exhaust emissions in a single cylinder compression ignition engine, Fuel 255, 115741. [CrossRef] [Google Scholar]
  • Li Y., Liu H., Yan F., Su D., Wang Y., Zhou H. (2017) High-calorific biogas production from anaerobic digestion of food waste using a two-phase pressurized biofilm (TPPB) system, Bioresour. Technol. 224, 56–62. [CrossRef] [Google Scholar]
  • Ruiz J.A., Juarez M.C., Morales M.P., Munoz P., Mendivil M.A. (2013) Biomass gasification for electricity generation: Review of current technology barriers, Renew. Sustain. Energy Rev. 18, 174–183. [CrossRef] [Google Scholar]
  • Diamantis V., Eftaxias A., Stamatelatou K., Noutsopoulos C., Vlachokostas C., Aivasidis A. (2021) Bioenergy in the era of circular economy: Anaerobic digestion technological solutions to produce biogas from lipid-rich wastes, Renew. Energy 168, 438–447. [CrossRef] [Google Scholar]
  • Tallou A., Salcedo F.P., Haouas A., Jamali M.Y., Atif K., Aziz F., Amir S. (2020) Assessment of biogas and biofertilizer produced from anaerobic co-digestion of olive mill wastewater with municipal wastewater and cow dung, Environ. Technol. Innov. 20, 101152. [CrossRef] [Google Scholar]
  • Tippayawong N., Thanompongchart P. (2010) Biogas quality upgrade by simultaneous removal of CO2 and H2S in a packed column reactor, Energy 35, 12, 4531–4535. [CrossRef] [Google Scholar]
  • Porpatham E., Ramesh A., Nagalingam B. (2013) Effect of swirl on the performance and combustion of a biogas fuelled spark ignition engine, Energy Conv. Manage. 76, 463–471. [CrossRef] [Google Scholar]
  • Simsek S., Uslu S. (2020) Investigation of the impacts of gasoline, biogas and LPG fuels on engine performance and exhaust emissions in different throttle positions on SI engine, Fuel 279, 118528. [CrossRef] [Google Scholar]
  • Jung C., Park J., Song S. (2015) Performance and NOx emissions of a biogas-fueled turbocharged internal combustion engine, Energy 86, 186–195. [CrossRef] [Google Scholar]
  • Hotta S.K., Sahoo N., Mohanty K., Kulkarni V. (2020) Ignition timing and compression ratio as effective means for the improvement in the operating characteristics of a biogas fueled spark ignition engine, Renew. Energy 150, 854–867. [CrossRef] [Google Scholar]
  • Kalsi S.S., Subramanian K.A. (2017) Effect of simulated biogas on performance, combustion and emissions characteristics of a bio-diesel fueled diesel engine, Renew. Energy 106, 78–90. [CrossRef] [Google Scholar]
  • Nadaleti W.C., Przybyla G. (2018) Emissions and performance of a spark-ignition gas engine generator operating with hydrogen-rich syngas, methane and biogas blends for application in southern Brazilian rice industries, Energy 154, 38–51. [CrossRef] [Google Scholar]
  • Verma S., Das L.M., Kaushik S.C. (2017) Effects of varying composition of biogas on performance and emission characteristics of compression ignition engine using exergy analysis, Energy Conv. Manage. 138, 346–359. [CrossRef] [Google Scholar]
  • Sadiq R., Iyer R.C. (2020) Experimental investigations on the influence of compression ratio and piston crown geometry on the performance of biogas fuelled small spark ignition engine, Renew. Energy 146, 997–1009. [CrossRef] [Google Scholar]
  • Feroskhan M., Ismail S. (2017) A review on the purification and use of biogas in compression ignition engines, Int. J. Autom. Mech. Eng. 14, 3, 4383–4400. [CrossRef] [Google Scholar]
  • Hotta S.K., Sahoo N., Mohanty K. (2019) Comparative assessment of a spark ignition engine fueled with gasoline and raw biogas, Renew. Energy 134, 1307–1319. [CrossRef] [Google Scholar]
  • Kriaučiūnas D., Pukalskas S., Rimkus A., Barta D. (2021) Analysis of the influence of CO2 concentration on a spark ignition engine fueled with biogas, Appl. Sci. 11, 14, 6379. [CrossRef] [Google Scholar]
  • Kim Y., Kawahara N., Tsuboi K., Tomita E. (2016) Combustion characteristics and NOX emissions of biogas fuels with various CO2 contents in a micro co-generation spark-ignition engine, Appl. Energy 182, 539–547. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.