Capillarity in Porous Media: Recent Advances and Challenges
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
Capillarity in Porous Media: Recent Advances and Challenges
Numéro d'article 73
Nombre de pages 7
Publié en ligne 24 novembre 2021
  • Maugeri L. (2004) Oil: Never cry wolf. Why the petroleum age is far from over, Science 304, 1114–1115. [CrossRef] [PubMed] [Google Scholar]
  • Morrow N.R. (1990) Wettability and its effect on oil recovery, J. Pet. Tech. 42, 1476–1484. [CrossRef] [Google Scholar]
  • Ivanova A., Mitiurev N., Cheremisin A., Orekhov A., Vasiliev A., Hairullin M., Afanasiev I. (2018) Direct wettability characterization of the carbonate reservoirs using different microscopic techniques, in: 80th EAGE Conference and Exhibition, June 11–14, 2018, Copenhagen, Denmark, pp. 1–5. [Google Scholar]
  • Schmatz J., Urai J.L., Berg S., Ott H. (2015) Nanoscale imaging of pore-scale fluid-fluid-solid contacts in sandstone, Geophys. Res. Lett. 42, 2189–2195. [CrossRef] [Google Scholar]
  • Mahani H., Keya A.L., Berg S., Bartels W.-B., Nasralla R., Rossen W.R. (2015) Insights into the mechanism of wettability alteration by low-salinity flooding (LSF) in carbonates, Energy Fuels 29, 1352–1367. [Google Scholar]
  • Iglauer S. (2017) CO2–water–rock wettability: Variability, influencing factors, and implications for CO2 geostorage, Acc. Chem. Res. 50, 1134–1142. [CrossRef] [PubMed] [Google Scholar]
  • Karymov M., Prochazka K., Mendenhall J., Martin T., Munk P., Webber S. (1996) Chemical attachment of polystyrole-block-poly(methacrylic acid) micelles on a silicon nitride surface, Langmuir 12, 20, 4748–4753. [CrossRef] [Google Scholar]
  • Karymov M., Tomschik M., Leuba S., Caiafa P., Zlatanova J. (2001) DNA methylation-dependent chromatin fiber compaction in vivo and in vitro: requirement for linker histone, Fasseb J. 15, 14, 2631–2641. [CrossRef] [PubMed] [Google Scholar]
  • Mori O., Imae T. (1997) AFM investigation of the adsorption process of bovine serum albumin on mica, Colloids Surf. B 9, 31–36. [CrossRef] [Google Scholar]
  • Pericet-Camara R., Papastavrou G., Borkovec M. (2004) Atomic force microscopy study of the adsorption and electrostatic self-organization of poly(amidoamine) dendrimers in mica, Langmuir 20, 3264–3270. [CrossRef] [PubMed] [Google Scholar]
  • Javadpour F., Farshi M.M., Amrein M. (2012) Atomic-force microscopy: A new tool for gas- shale characterization, J. Can. Pet. Technol. 51, 04, 236–243. SPE 161015. [CrossRef] [Google Scholar]
  • Liu K., Ostadhassan M., Jabbari H., Bubach B. (2016) Potential application of atomic force microscopy in characterization of nano-pore structures of Bakken formation, in: Low Perm Symposium, 5–6 May 2016, Denver, Colorado, USA. SPE-180276- MS SPE. [Google Scholar]
  • Leite F.L., Bueno C.Cc, Da Roz A.L., Ziemath E.C., Oliveira O.N. (2012) Theoretical models for surface forces and adhesion and their measurement using atomic force microscopy, Int. J. Mol. Sci. 13, 12773–12856. [CrossRef] [Google Scholar]
  • Yin X., Miller J.D. (2012) Wettability of kaolinite basal planes based on surface force measurements using atomic force microscopy, Miner 29, 1. [Google Scholar]
  • Seiedi O., Rahbar M., Nabipour M., Emadi M., Ghatee M., Ayatollahi S. (2011) Atomic force microscopy (AFM) investigation on the surfactant wettability alteration mechanism of aged mica mineral surfaces, Energy Fuels 25, 183–188. [CrossRef] [Google Scholar]
  • Hassenkam T., Skovbjerg L.L., Stipp S.L.S. (2009) Probing the intrinsically oil-wet surfaces of pores in North Sea chalk at subpore resolution, PNAS 106, 15, 6071–6076. [CrossRef] [PubMed] [Google Scholar]
  • Deng Y., Xu L., Lu H., Wang H., Shi Y. (2018) Direct measurement of the contact angle of water droplet on quartz in a reservoir rock with atomic force microscopy, Chem. Eng. Sci. 177, 445–454. [CrossRef] [Google Scholar]
  • Ivanova A., Mitiurev N., Cheremisin A., Orekhov A., Kamyshinsky R., Vasiliev A. (2019) Characterization of organic layer in oil carbonate reservoir rocks and its effect on microscale wetting properties, Sci. Rep. 9, 10667. [Google Scholar]
  • Yesufu-Rufai S., Marcelis F., Georgiadis A., Berg S., Rucker M., van Wunnik J., Luckham P. (2020) Atomic Force Microscopy (AFM) study of redox conditions in sandstones: Impact of wettability modification and mineral morphology, Colloids Surf. A 597, 124765. [CrossRef] [Google Scholar]
  • Kumar K., Dao E., Mohanty K.K. (2005) AFM study of mineral wettability with reservoir oils, J Colloid Interface Sci 289, 206–217. [CrossRef] [PubMed] [Google Scholar]
  • Sedin D., Rowlen K. (2000) Adhesion forces measured by atomic force microscopy in humid air, Anal. Chem. 72, 2183–2189. [CrossRef] [PubMed] [Google Scholar]
  • Jones R., Pollock H., Cleaver J., Hodges C. (2002) Adhesion forces between glass and silicon surfaces in air studied by AFM: Effects of relative humidity, particle size, roughness and surface treatment, Langmuir 18, 8045–8055. [CrossRef] [Google Scholar]
  • Mitiurev N., Verrall M., Ivanova A., Keshavarz A., Iglauer S. (2021) Sample preparation for rock wettability studies via atomic force microscopy, APPEA J. 61, 1, 216–223. [CrossRef] [Google Scholar]
  • Fisher L., Israelachvili J. (1981) Experimental studies on the applicability of the Kelvin equation to highly curved concave menisci, J. Colloid Interface Sci. 80, 528–541. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.