Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
Article Number 65
Number of page(s) 21
DOI https://doi.org/10.2516/ogst/2021044
Published online 01 October 2021
  • Abdullahi M.B., Rajaei K., Junin R., Bayat A.E. (2019) Appraising the impact of metal-oxide nanoparticles on rheological properties of HPAM in different electrolyte solutions for enhanced oil recovery, J. Pet. Sci. Eng. 172, 1, 1057–1068. [CrossRef] [Google Scholar]
  • Abidin A.Z., Puspasari T., Nugroho W.A. (2012) Polymers for enhanced oil recovery technology, Procedia Chem. 4, 1, 11–16. [CrossRef] [Google Scholar]
  • Abirov R., Ivakhnenko A.P., Abirov Z., Eremin N.A. (2019) The associative polymer flooding: an experimental study, J. Pet. Explor. Prod. Technol. 1, 1, 1–8. [Google Scholar]
  • Afolabi R.O., Oluyemi G.F., Officer S., Ugwu J.O. (2019) Hydrophobically associating polymers for enhanced oil recovery – Part A: A review on the effects of some key reservoir conditions, J. Pet. Sci. Eng. 180, 1, 681–698. [CrossRef] [Google Scholar]
  • Akbari S., Mahmood S.M., Tan I.M., Ghaedi H., Ling O.L. (2017a) Assessment of polyacrylamide based co-polymers enhanced by functional group modifications with regards to salinity and hardness, Polymers 9, 1, 647–662. [CrossRef] [Google Scholar]
  • Akbari S., Mahmood S.M., Tan I.M., Ling O.L., Ghaedi H. (2017b) Effect of aging, antioxidant, and mono- and divalent ions at high temperature on the rheology of new polyacrylamide-based co-polymers, Polymers 9, 10, 480–493. [CrossRef] [Google Scholar]
  • Amirian E., Dejam M., Chen Z. (2018) Performance forecasting for polymer flooding in heavy oil reservoirs, Fuel 216, 1, 83–100. [CrossRef] [Google Scholar]
  • Azad M.S., Dalsania Y., Trivedi J.J. (2018) Understanding the flow behavior of copolymer and associative polymers in porous media using extensional viscosity characterization: effect of hydrophobic association, Can. J. Chem. Eng. 96, 11, 2498–2508. [CrossRef] [Google Scholar]
  • Bai B., Zhou J., Yin M. (2015) A comprehensive review of polyacrylamide polymer gels for conformance control, Pet. Explor. Dev. 42, 4, 525–532. [CrossRef] [Google Scholar]
  • Bai Y., Shang X., Wang Z., Zhao X. (2018) Experimental study on hydrophobically associating hydroxyethyl cellulose flooding system for enhanced oil recovery, Energy Fuels. 32, 6, 6713–6725. [CrossRef] [Google Scholar]
  • Buckley S.E., Leverett M.C. (1942) Mechanism of fluid displacement in sands, Trans. 146, 1, 107–116. [Google Scholar]
  • Cao P., Mangadlao J.D., Advincula R.C. (2015) Stimuli-responsive polymers and their potential application in oil-gas industry, Polym. Rev. 55, 4, 706–733. [CrossRef] [Google Scholar]
  • Chen Q., Wang Y., Lu Z., Feng Y. (2013) Thermo-viscosifying polymer used for enhanced oil recovery: rheological behaviors and core flooding test, Polym. Bull. 70, 2, 391–401. [CrossRef] [Google Scholar]
  • Cheraghian G. (2016) Effect of nano titanium dioxide on heavy oil recovery during polymer flooding, Petrol. Sci. Tech. 34, 7, 633–641. [CrossRef] [Google Scholar]
  • Cheraghian G., Hendraningrat L. (2016) A review on applications of nanotechnology in the enhanced oil recovery part A: effects of nanoparticles on interfacial tension, Int. Nano Lett. 6, 2, 129–138. [CrossRef] [Google Scholar]
  • Choi B., Jeong M.S., Lee K.S. (2014) Temperature-dependent viscosity model of PHPA polymer through high-temperature reservoirs, Polym. Degrad. Stab. 110, 1, 225–231. [CrossRef] [Google Scholar]
  • Choi B., Yu K., Lee K.S. (2016) Modelling of polymer retention during low concentrated PHPA polymer flooding in the heterogeneous reservoirs, Int. J. Oil, Gas Coal Technol. 11, 3, 249–263. [CrossRef] [Google Scholar]
  • Clark A., Howe A.M., Mitchell J., Staniland J., Hawkes L.A. (2015) How viscoelastic-polymer flooding enhances displacement efficiency, in: SPE Asia Pacific Enhanced Oil Recovery Conference, Soc. Pet. Eng, Malásia, pp. 675–687. [Google Scholar]
  • Corredor L.M., Husein M.M., Maini B.B. (2019) Effect of hydrophobic and hydrophilic metal oxide nanoparticles on the performance of xanthan gum solutions for heavy oil recovery, Nanomaterials 9, 1, 94–106. [CrossRef] [Google Scholar]
  • Corredor-Rojas L.M., Hemmati-Sarapardeh A., Husein M.M., Dong M., Maini B.B. (2018) Rheological behavior of surface modified silica nanoparticles dispersed in partially hydrolyzed polyacrylamide and xanthan gum solutions: experimental measurements, mechanistic understanding, and model development, Energy Fuels 32, 10, 10628–10638. [CrossRef] [Google Scholar]
  • Dashtbesh N., Enchéry G., Noetinger B. (2021) A dynamic coarsening approach to immiscible multiphase flows in heterogeneous porous media, J. Pet. Sci. Eng. 201, 1, 1–14. [CrossRef] [Google Scholar]
  • Data M.J., Milanesio J.M., Martini R., Strumia M. (2018) Synthesis techniques for polymers applied to enhanced oil recovery, MOJ Polym. Sci. 2, 1, 17–20. [Google Scholar]
  • Delamaide E., Zaitoun A., Renard G., Tabary R. (2014) Pelican Lake field: first successful application of polymer flooding in a heavy oil reservoir, Soc. Pet. Eng. 17, 3, 1–22. [Google Scholar]
  • Deng Q., Li H., Li Y., Cao X., Yang Y., Song X. (2014) Rheological properties and salt resistance of a hydrophobically associating polyacrylamide, Aust. J. Chem. 67, 10, 1396–1402. [CrossRef] [Google Scholar]
  • Divers T., Al-Hashmi A.R., Al-Maamari R.S., Favero C. (2018) Development of thermo-responsive polymers for CEOR in extreme conditions: applicability to Oman oil fields, in: SPE EOR Conference at Oil and Gas West Asia, Soc. Pet. Eng, Oman, pp. 1–15. [Google Scholar]
  • Dubin P., Strauss U.P. (1967) Hydrophobic hypercoiling in copolymers of maleic acid and alkyl vinyl ethers, J. Phys. Chem. A. 71, 8, 2757–2759. [CrossRef] [Google Scholar]
  • El-Hoshoudy A.N., Desouky S.E.M., Elkady M.Y., Al-Sabagh A.M., Betiha M.A., Mahmoud S. (2017a) Hydrophobically associated polymers for wettability alteration and enhanced oil recovery – Article review, Egypt. J. Pet. 26, 3, 757–762. [CrossRef] [Google Scholar]
  • El-Hoshoudy A.N., Desouky S.E.M., Alsabagh A.M., Betiha M.A., El-Kady M.Y., Mahmoud S. (2017b) Evaluation of solution and rheological properties for hydrophobically associated polyacrylamide copolymer as a promised enhanced oil recovery candidate, Egypt. J. Pet. 26, 3, 779–785. [CrossRef] [Google Scholar]
  • El-Hoshoudy A.N., Desouky S.M., Gomaa S. (2019) Application of acrylates in enhanced oil recovery, J. New Develop. Chem. 2, 3, 1–17. [Google Scholar]
  • Ferreira V.H.S., Moreno R.B.Z.L. (2020) Experimental evaluation of low concentration scleroglucan biopolymer solution for enhanced oil recovery in carbonate, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 75, 61, 1–17. [CrossRef] [Google Scholar]
  • Firozjaii A.M., Moradi S. (2018) Sensitive analysis and optimization of the effective parameters on ASP flooding compared to polymer flooding using CMG-STARS, J. Pet. Environ. Biotechnol. 9, 1, 361–365. [CrossRef] [Google Scholar]
  • Firozjaii A.M., Saghafi H.R. (2019) Review on chemical enhanced oil recovery using polymer flooding: fundamentals, experimental and numerical simulation, Petroleum 1, 1, 163–174. [Google Scholar]
  • Gao C.H. (2011) Scientific research and field applications of polymer flooding in heavy oil recovery, J. Pet. Explor. Prod. Technol. 1, 2, 65–70. [CrossRef] [Google Scholar]
  • Gao C.H. (2013) Viscosity of partially hydrolyzed polyacrylamide under shearing and heat, J. Pet. Explor. Prod. Technol. 3, 3, 203–206. [CrossRef] [Google Scholar]
  • Gbadamosi A.O., Junin R., Manan M.A., Yekeen N., Augustine A. (2019a) Hybrid suspension of polymer and nanoparticles for enhanced oil recovery, Polym. Bull. 76, 1, 6193–6230. [CrossRef] [Google Scholar]
  • Gbadamosi A.O., Junin R., Manan M.A., Agi A., Yusuff A.S. (2019b) An overview of chemical enhanced oil recovery: recent advances and prospects, Int. Nano Lett. 9, 3, 171–202. [CrossRef] [Google Scholar]
  • Ghoumrassi-Barr S., Aliouche D. (2016) A rheological study of xanthan polymer for enhanced oil recovery, J. Macromol. Sci. Phys. 55, 8, 793–809. [CrossRef] [Google Scholar]
  • Giraldo L.J., Giraldo M.A., Llanos S., Maya G., Zabala R.D., Nassar N.N., Franco C.A., Alvarado V., Cortés F.B. (2017) The effects of SiO2 nanoparticles on the thermal stability and rheological behavior of hydrolyzed polyacrylamide based polymeric solutions, J. Pet. Sci. Eng. 159, 1, 841–852. [CrossRef] [Google Scholar]
  • Gou S., Luo S., Liu T., Zhao P., He Y., Pan Q., Guo Q. (2015) A novel water-soluble hydrophobically associating polyacrylamide based on oleic imidazoline and sulfonate for enhanced oil recovery, New J. Chem. 39, 10, 7805–7814. [CrossRef] [Google Scholar]
  • Guérillot D., Kadiri M., Trabelsi S. (2020) Buckley-Leverett theory for two-phase immiscible fluids flow model with explicit phase-coupling terms, Water 12, 11, 1–18. [Google Scholar]
  • Han X., Zhang G., Yu J., Chen Z., Kurnia I. (2018) As investigation of retention and unusually high apparent viscosity of hydrophobically associative polymer in porous media, in: SPE Improved Oil Recovery Conference, Soc. Pet. Eng, Oklahoma, pp. 1–10. [Google Scholar]
  • Haruna M.A., Nourafkan E., Hu Z., Wen D. (2019) Improved polymer flooding in harsh environments by free-radical polymerization and the use of nanomaterials, Energy Fuels 33, 2, 1637–1648. [CrossRef] [Google Scholar]
  • Haruna M.A., Gardy J., Yao G., Hu Z., Hondow N., Wen D. (2020) Nanoparticle modified polyacrylamide for enhanced oil recovery at harsh conditions, Fuel. 268, 1, 117186–117204. [CrossRef] [Google Scholar]
  • Hashmet M.R., Onur M., Tan I.M. (2014a) Empirical correlations for viscosity of polyacrylamide solutions with the effects of salinity and hardness, J. Dispers. Sci. Technol. 35, 4, 510–517. [CrossRef] [Google Scholar]
  • Hashmet M.R., Onur M., Tan I.M. (2014b) Empirical correlations for viscosity of polyacrylamide solutions with the effects of temperature and shear rate, J. Dispers. Sci. Technol. 35, 12, 1685–1690. [CrossRef] [Google Scholar]
  • Hourdet D., L’Alloret F., Audebert R. (1994) Reversible thermothickening of aqueous polymer solutions, Polymer 35, 12, 2624–2630. [CrossRef] [Google Scholar]
  • Hu Z., Haruna M., Gao H., Nourafkan E., Wen D. (2017) Rheological properties of partially hydrolyzed polyacrylamide seeded by nanoparticles, Ind. Eng. Chem. Res. 56, 12, 3456–3463. [Google Scholar]
  • International Energy Agency (2019) Global energy & CO2 status report. Available at https://www.iea.org/geco/oil/2019. [Google Scholar]
  • Jang H.Y., Zhang K., Chon B.H., Choi H.J. (2015) Enhanced oil recovery performance and viscosity characteristics of polysaccharide xanthan gum solution, J. Ind. Eng. Chem. 21, 1, 741–745. [CrossRef] [Google Scholar]
  • Jiang F., Pu W., Li Y., Du D. (2015) A double-tailed acrylamide hydrophobically associating polymer: synthesis, characterization, and solution properties, J. Appl. Polym. Sci. 132, 38, 42569–42578. [Google Scholar]
  • Jung J.C., Zhang K., Chon B.H., Choi H.J. (2013) Rheology and polymer flooding characteristics of partially hydrolyzed polyacrylamide for enhanced heavy oil recovery, J. Appl. Polym. Sci. 127, 6, 4833–4839. [Google Scholar]
  • Kamal M.S., Sultan A.S., Al-Mubaiyedh U.A., Hussein I.A. (2015a) Review on polymer flooding: rheology, adsorption, stability, and field applications of various polymer systems, Polym. Rev. 55, 3, 491–530. [Google Scholar]
  • Kamal M.S., Sultan A.S., Al-Mubaiyedh U.A., Hussein I.A., Feng Y. (2015b) Rheological properties of thermoviscosifying polymers in high-temperature and high-salinity environments, Can. J. Chem. Eng. 93, 7, 1194–1200. [Google Scholar]
  • Kamal M.S., Sultan A. (2017) Thermosensitive water soluble polymers: a solution to high temperature and high salinity reservoirs, in: SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, Soc. Pet. Eng, Dammam, pp. 1–16. [Google Scholar]
  • Kamari A., Pournik M., Rostami A., Amirlatifi A., Mohammadi A.H. (2017) Characterizing the CO2-brine Interfacial Tension (IFT) using robust modeling approaches: a comparative study, J. Mol. Liq. 246, 1, 32–38. [CrossRef] [Google Scholar]
  • Kang P., Lim J., Huh C. (2016) Artificial neural network model to estimate the viscosity of polymer solutions for enhanced oil recovery, Appl. Sci. 67, 188–202. [Google Scholar]
  • Karkevandi-Talkhooncheh A., Rostami A., Hemmati-Sarapardeh A., Ahmadi M., Husein M.M., Dabir B. (2018) Modeling minimum miscibility pressure during pure and impure CO2 flooding using hybrid of radial basis function neural network and evolutionary techniques, Fuel 220, 1, 270–282. [CrossRef] [Google Scholar]
  • Khamis M.A., Omer O.A., Kinawy M.M. (2018) Predicting the optimum concentration of partially hydrolyzed polyacrylamide polymer in brine solutions for better oil recovery, experimental study, in: SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, Soc. Pet. Eng, Dammam, pp. 1–17. [Google Scholar]
  • Lai N., Dong W., Ye Z., Dong J., Qin X., Chen W., Chen K. (2012) A water-soluble acrylamide hydrophobically associating polymer: synthesis, characterization, and properties as EOR chemical, J. Appl. Polym. Sci. 1294, 1888–1896. [Google Scholar]
  • Landoll L. (1985) Hydrophobically modified polymers, US n. 4529523A, 16 jul. 1985. [Google Scholar]
  • Leblanc T., Braun O., Thomas A., Divers T., Gailard N., Favero C. (2015) Rheological properties of stimuli-responsive polymers in solution to improve the salinity and temperature performances of polymer-based chemical enhanced oil recovery, in: SPE Asia Pacific Enhanced Oil Recovery, Soc. Pet. Eng., Kuala Lumpur, pp. 1–17. [Google Scholar]
  • Leiting S., Zhongbin Y., Zhuo Z., Changjiang Z., Shanshan Z., Zhidong G. (2010) Necessity and feasibility of improving the residual resistance factor of polymer flooding in heavy oil reservoirs, Pet. Sci. 7, 2, 251–256. [Google Scholar]
  • Leiting S., Lei C., Zhongbin Y., Wei Z., Jian Z., Jie Y., Jianbo J. (2012) Effect of polymer solution structure on displacement efficiency, Pet. Sci. 9, 2, 230–235. [Google Scholar]
  • Levitt D., Jouenne S., Bondino I., Santanach-Carreras E., Bourrel M. (2013) Polymer flooding of heavy oil under adverse mobility conditions, in: SPE Enhanced Oil Recovery Conference, Soc. Pet. Eng, Malásia, pp. 1–13. [Google Scholar]
  • Li X., Xu Z., Yin H., Feng Y., Quan H.O. (2017) Comparative studies on enhanced oil recovery: thermoviscosifying polymer versus polyacrylamide, Energy Fuels 31, 3, 2479–2487. [Google Scholar]
  • Li X., Shu Z., Luo P., Ye Z. (2018) Associating polymer networks based on cyclodextrin inclusion compounds for heavy oil recover, J. Chem. 1, 1–9. [Google Scholar]
  • Liu P., Mu Z., Wang C., Wang Y. (2017a) Experimental study of rheological properties and oil displacement efficiency in oilfields for a synthetic hydrophobically modified polymer, Sci. Rep. 7, 1, 8791–8801. [Google Scholar]
  • Liu R., Pu W., Sheng J.J., Du D. (2017b) Star-like hydrophobically associative polyacrylamide for enhanced oil recovery: comprehensive properties in harsh reservoir condition, J. Taiwan Inst. Chem. Eng. 80, 1, 639–649. [Google Scholar]
  • Ma Q., Shuler P.J., Aften C.W., Tang Y. (2015) Theoretical studies of hydrolysis and stability of polyacrylamide polymers, Polym. Degrad. Stab. 121, 1, 69–77. [Google Scholar]
  • Mahran S., Attia A., Saha B. (2018) A review on polymer flooding in enhanced oil recovery under harsh conditions, in: 11th International Sustainable Energy & Environmental Protection Conference, Paisley, Scotland, pp. 1–6. [Google Scholar]
  • Maia A.M.S., Borsali R., Balaban R.C. (2009) Comparison between a polyacrylamide and a hydrophobically modified polyacrylamide flood in a sandstone core, Mater. Sci. Eng. C. 29, 2, 505–509. [Google Scholar]
  • Manichand R.N., Let K.P.M.S., Gil L., Quillien B., Seright R.S. (2013) Effective propagation of PHPA solutions through the Tambaredjo reservoir during a polymer flood, Soc. Pet. Eng. 28, 4, 358–368. [Google Scholar]
  • Manrique E., Ahmadi M., Samani S. (2017) Historical and recent observations in polymer floods: an update review, CT F-Cienc. Tecn. Fut. 6, 5, 17–48. [Google Scholar]
  • Mogollón J.L., Yomdo S., Salazar A., Dutta R., Bobula D., Dhodapkar P.K., Lokandwala T., Chandrasekar V. (2019) Maximizing a mature field value by combining polymer flooding, well interventions, and infill drilling, in: SPE Oil and Gas India Conference and Exhibition, Soc. Pet. Eng, Mumbai, pp. 1–21. [Google Scholar]
  • Moura M.R.V., Moreno R.B.Z.L. (2019) Concentration, brine salinity and temperature effects on xanthan gum solutions rheology, Appl. Rheol. 29, 1, 69–79. [Google Scholar]
  • Nguyen B.D., Ngo T.K., Bui T.H., Pham D.K., Dinh X.L., Nguyen P.T. (2015) The impact of graphene oxide particles on viscosity stabilization for diluted polymer solutions using in enhanced oil recovery at HTHP offshore reservoirs, Adv. Nat. Sci: Nanosci. Nanotechnol. 6, 1, 1–8. [Google Scholar]
  • Nwidee L.N., Theophilus S., Barifcani A., Sarmadivaleh M., Iglauer S. (2016) EOR processes, opportunities and technological advancements, in Chemical Enhanced Oil Recovery (cEOR), L. Romero-Zerón (ed), Nova Brunswick, IntechOpen, pp. 1–52. [Google Scholar]
  • Oliveira P.F., Costa J.A., Oliveira L.F.S., Mota L.S., Oliveira L.A., Mansur C.R.E. (2019) Hydrolysis and thermal stability of partially hydrolyzed polyacrylamide in high-salinity environments, J. Appl. Polym. Sci. 13629, 47793–47803. [Google Scholar]
  • Patokina O.Y. (2015) Polymer flooding by hydrophobically associating polyacrylamide (technology of preparation. The study of the processes of stability and degradation), in: SPE Russian Petroleum Technology Conference, Soc. Pet. Eng, Moscow, pp. 1–14. [Google Scholar]
  • Peng F., Ke Y., He J., Lu S., Hu X. (2019) Big effects of small nanoparticles on hydrophobically modified polyacrylamide in an aqueous solution, J. Appl. Polym. Sci. 136, 16, 47269–47277. [Google Scholar]
  • Pope G.A. (2011) Recent developments and remaining challenges of enhanced oil recovery, Soc. Pet. Eng. 63, 7, 65–68. [Google Scholar]
  • Quan H., Hu Y., Huang Z., Wenmeng D. (2019) Preparation and property evaluation of a hydrophobically modified xanthan gum XG-C16, J. Dispers. Sci. Technol. 1, 1, 1–12. [Google Scholar]
  • Rangel I.R., Thompson R.L., Pereira R.G., Abreu F.L.B. (2012) Experimental investigation of the enhanced oil recovery process using a polymeric solution, J. Braz. Soc. Mech. Sci. Eng. 34, 3, 285–293. [Google Scholar]
  • Reichenbach-Klinke R., Zimmermann T., Stavland A., Strand D. (2018) Temperature-switchable polymers for improved oil recovery, in: SPE Norway One Day Seminar, Soc. Pet. Eng, Bergen, pp. 1–18. [Google Scholar]
  • Rellegadla S., Prajapat G., Agrawal A. (2017) Polymers for enhanced oil recovery: fundamentals and selection criteria, Appl. Microbiol. Biotechnol. 101, 11, 4387–4402. [PubMed] [Google Scholar]
  • Rellegadla S., Bairwa H.K., Kumari M.R., Prajapat G., Nimesh S., Pareek N., Jain S., Agrawal A. (2018) An effective approach for enhanced oil recovery using nickel nanoparticles assisted polymer flooding, Energy Fuels 32, 11, 11212–11221. [Google Scholar]
  • Rezaei A., Abdi M., Mohebbi A., Tatar A., Mohammadi A.H. (2016) Using surface modified clay nanoparticles to improve rheological behavior of hydrolized polyacrylamid (HPAM) solution for enhanced oil recovery with polymer flooding, J. Mol. Liq. 222, 1, 1148–1156. [Google Scholar]
  • Rezaian A., Kordestany A., Sefat M.H. (2010) Experimental and artificial neural network approaches to predict the effect of PVA (Poly Vinyl Acetate) on the rheological properties of water and crude oil in EOR processes, in: Nigeria Annual International Conference and Exhibition, Soc. Pet. Eng, Nigeria, pp. 1–6. [Google Scholar]
  • Rostami A., Anbaz M.A., Gahrooei H.R.E., Arabloo M., Bahadori A. (2018a) Accurate estimation of CO2 adsorption on activated carbon with Multi-Layer Feed-Forward Neural Network (MLFNN) algorithm, Egypt. J. Pet. 27, 1, 65–73. [Google Scholar]
  • Rostami A., Arabloo M., Ebadi H. (2017a) Genetic programming (GP) approach for prediction of supercritical CO2 thermal conductivity, Chem. Eng. Res. Des. 122, 1, 164–175. [Google Scholar]
  • Rostami A., Arabloo M., Kamari A., Mohammadi A.H. (2017b) Modeling of CO2 solubility in crude oil during carbon dioxide enhanced oil recovery using gene expression programming, Fuels 210, 1, 768–782. [Google Scholar]
  • Rostami A., Ebadi H., Arabloo M., Meybodi M.K., Bahadori A. (2017c) Toward Genetic Programming (GP) approach for estimation of hydrocarbon/water interfacial tension, J. Mol. Liq. 230, 1, 175–189. [Google Scholar]
  • Rostami A., Kalantari-Meybodi M., Karimi M., Tatar A., Mohammadi A.H. (2018b) Efficient estimation of hydrolyzed polyacrylamide (HPAM) solution viscosity for enhanced oil recovery process by polymer flooding, Oil Gas Sci. Technol. – Rev. IFP Energies Nouvelles 73, 22, 1–17. [Google Scholar]
  • Rostami A., Masoudi M., Ghaderi-Ardakani A., Arabloo M., Amani M. (2016) Effective thermal conductivity modeling of sandstones: SVM framework analysis, Int. J. Thermophys. 37, 6, 59–73. [Google Scholar]
  • Roy D., Brooks W.L.A., Sumerlin B.S. (2013) New directions in thermoresponsive polymers, Chem. Soc. Rev. 42, 17, 7214–7243. [PubMed] [Google Scholar]
  • Sarsenbekuly B., Kang W., Fan H., Yang H., Dai C., Zhao B., Aidarova S.B. (2017a) Study of salt tolerance and temperature resistance of a hydrophobically modified polyacrylamide based novel functional polymer for EOR, Colloids Surf. A Physicochem. Eng. Asp. 514, 1, 91–97. [Google Scholar]
  • Sarsenbekuly B., Kang W., Yang H., Zhao B., Aidarova S., Yu B., Issakhov M. (2017b) Evaluation of rheological properties of a novel thermo-viscosifying functional polymer for enhanced oil recovery, Colloids Surf. A Physicochem. Eng. Asp. 532, 1, 405–410. [Google Scholar]
  • Sedaghat M.H., Hatampour A., Razmi R. (2013) Investigating the role of polymer type and dead end pores distribution on oil recovery efficiency during ASP flooding, Egypt. J. Pet. 22, 2, 241–247. [Google Scholar]
  • Sheng J.J., Leonhardt B., Azri N. (2015) Status of polymer-flooding technology, Soc. Pet. Eng. 54, 2, 1116–1126. [Google Scholar]
  • SNF (2020) A cost-effective EOR technique to reduce carbon intensity with polymer flooding and modular skids, Available in: https://www.snf.com/wp-content/uploads/2020/08/Cost-Efficient-EOR-3p-v4.pdf>. Access in: 19 may. 2021. [Google Scholar]
  • Stavland A., Jonsbraten H.C., Lohne A., Moen A., Giske N.H. (2010) Polymer flooding – Flow properties in porous media versus rheological parameters, in: SPE EUROPEC/EAGE Annual Conference and Exhibition, Soc. Pet. Eng, Barcelona, pp. 1–15. [Google Scholar]
  • Su X., Feng Y. (2018) Thermoviscosifying smart polymers for oil and gas production: state of the art, in: Chemphyschem. 19, 16, 1941–1955. [PubMed] [Google Scholar]
  • Thomas A., Gaillard N., Favero C. (2012) Some key features to consider when studying acrylamide-based polymers for chemical enhanced oil recovery, Oil Gas Sci. Technol. – Rev. IFP Energies Nouvelles 67, 6, 887–902. [Google Scholar]
  • Thomas A. (2016) Polymer flooding, in: Chemical Enhanced Oil Recovery (cEOR), L. Romero-Zerón (ed.), Nova Brunswick, IntechOpen, pp. 55–99. [Google Scholar]
  • Wang Y., Feng Y., Wang B., Lu Z. (2010) A novel thermoviscosifying water-soluble polymer: synthesis and aqueous solution properties, J. Appl. Polym. Sci. 116, 6, 3516–3524. [Google Scholar]
  • Wang Y., Lu Z., Han Y., Feng Y., Tang C. (2011) A novel thermoviscosifying water-soluble polymer for enhancing oil recovery from high-temperature and high-salinity oil reservoirs, Adv. Mat. Res. 306–307, 1, 654–657. [Google Scholar]
  • Wang G., Yi X., Feng X., Jing B., Ouyang J. (2012) Synthesis and study of a new copolymer for polymer flooding in high-temperature, high-salinity reservoirs, Chem. Technol. Fuels Oils 48, 2, 112–119. [Google Scholar]
  • Wang C., Liu P., Wang Y., Yuan Z., Xu Z. (2018a) Experimental study of key effect factors and simulation on oil displacement efficiency for a novel modified polymer BD-HMHEC, Sci. Rep. 8, 1, 3860–3869. [Google Scholar]
  • Wang M., Sun G., Han P., Su X., Feng Y. (2018b) Thermoviscosifying polymers based on polyether prepared from inverse emulsion polymerization, J. Appl. Polym. Sci. 135, 39, 46696–46705. [Google Scholar]
  • Wei B., Romero-Zerón L. (2014) The evaluation of a technological trend in polymer flooding for heavy oil recovery, J. Pet. Sci. Eng. 32, 19, 2396–2404. [Google Scholar]
  • Wei B., Romero-Zerón L., Rodrigue D. (2014) Mechanical properties and flow behavior of polymers for enhanced oil recovery, J. Macromol. Sci. Phys. 53, 4, 625–644. [Google Scholar]
  • Wever D.A.Z., Picchioni F., Broekhuis A.A. (2011) Polymers for enhanced oil recovery: A paradigm for structure–property relationship in aqueous solution, Prog. Polym. Sci. 36, 11, 1558–1628. [Google Scholar]
  • Wu Y., Liu X., Wang Y., Guo Z., Feng Y. (2012) Synthesis and aggregation behaviors of well-defined thermoresponsive pentablock terpolymers with tunable LCST, Macromol. Chem. Phys. 213, 14, 1489–1498. [Google Scholar]
  • Xie K., Cao B., Lu X., Jiang W., Zhang Y., Li Q., Song K., Liu J., Wang W., Lv J., Na R. (2019) Matching between the diameter of the aggregates of hydrophobically associating polymers and reservoir pore-throat size during polymer flooding in an offshore oilfield, J. Pet. Sci. Eng. 177, 1, 558–569. [Google Scholar]
  • Xu L., Xu G., Liu T., Chen Y., Gong H. (2013) The comparison of rheological properties of aqueous welan gum and xanthan gum solutions, Carbohydr. Polym. 92, 1, 516–522. [PubMed] [Google Scholar]
  • Yadav U.S., Kumar H., Roy V., Juyal S., Tripathi A., Shanker A. (2020) Experimental evaluation of partially hydrolyzed polyacrylamide and silica nanoparticles solutions for enhanced oil recovery, J. Pet. Explor. Prod. Technol. 10, 1, 1109–1114. [Google Scholar]
  • Zeyghami M., Kharrat R., Ghazanfari M.H. (2014) Investigation of the applicability of nano silica particles as a thickening additive for polymer solutions applied in EOR processes, Energ. Source Part A 36, 12, 1315–1324. [Google Scholar]
  • Zhang Z., Li J., Zhou J. (2011a) Microscopic roles of “viscoelasticity” in HPMA polymer flooding for EOR, Transp. Porous Media 86, 1, 199–214. [Google Scholar]
  • Zhang P., Wang Y., Chen W., Yu H., Qi Z., Li K. (2011b) Preparation and solution characteristics of a novel hydrophobically associating terpolymer for enhanced oil recovery, J. Solution Chem. 40, 3, 447–457. [Google Scholar]
  • Zhang R., Ye Z., Peng L., Qin N., Shu Z., Luo P. (2012) The shearing effect on hydrophobically associative water-soluble polymer and partially hydrolyzed polyacrylamide passing through wellbore simulation device, J. Appl. Polym. Sci. 127, 1, 682–689. [Google Scholar]
  • Zhang P., Wang Y., Yang Y., Chen W., Bai S. (2015) Effective viscosity in porous media and applicable limitations for polymer flooding of an associative polymer, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 70, 6, 931–939. [Google Scholar]
  • Zhang Y., Feng Y., Li B., Han P. (2019) Enhancing oil recovery from low-permeability reservoirs with a self-adaptive polymer: a proof-of-concept study, Fuels 251, 1, 136–146. [Google Scholar]
  • Zheng C., Cheng Y., Wei Q., Li X., Zhang Z. (2017) Suspension of surface-modified nano-SiO2 in partially hydrolyzed aqueous solution of polyacrylamide for enhanced oil recovery, Colloids Surf. A Physicochem. Eng. Asp. 524, 1, 169–177. [Google Scholar]
  • Zhong C., Luo P., Ye Z., Chen H. (2009) Characterization and solution properties of a novel water-soluble terpolymer for enhanced oil recovery, Polym. Bull. 62, 1, 79–89. [Google Scholar]
  • Zhong H., Li Y., Zhang W., Yin H., Lu J., Guo D. (2018) Microflow mechanism of oil displacement by viscoelastic hydrophobically associating water-soluble polymers in enhanced oil recovery, Polymers 10, 6, 628–642. [Google Scholar]
  • Zhou W., Zhang J., Han M., Xiang W., Feng G., Jiang W. (2007) Application of hydrophobically associating water-soluble polymer for polymer flooding in China offshore heavy oilfield, in: International Petroleum Technology Conference, Soc. Pet. Eng, Dubai, pp. 1–5. [Google Scholar]
  • Zhu Y., Xu Y., Huang G. (2013) Synthesis and aqueous solution properties of novel thermosensitive polyacrylamide derivatives, J. Appl. Polym. Sci. 1302, 766–775. [Google Scholar]
  • Zhu D., Han Y., Zhang J., Li X., Feng Y. (2014a) Enhancing rheological properties of hydrophobically associative polyacrylamide aqueous solutions by hybriding with silica nanoparticles, J. Appl. Polym. Sci. 131, 19, 40876–40883. [Google Scholar]
  • Zhu D., Wei L., Wang B., Feng Y. (2014b) Aqueous hybrids of silica nanoparticles and hydrophobically associating hydrolyzed polyacrylamide used for EOR in high-temperature and high-salinity reservoirs, Energies 7, 6, 3858–3871. [Google Scholar]
  • Zou C., Zhao P., Hu X., Yan X., Zhang Y., Wang X., Song R., Luo P. (2013) β-Cyclodextrin-functionalized hydrophobically associating acrylamide copolymer for enhanced oil recovery, Energy Fuels 27, 5, 2827–2834. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.