Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
Article Number 64
Number of page(s) 12
Published online 29 September 2021
  • Rahimpour M.R., Jafari M., Iranshahi D. (2013) Progress in catalytic naphtha reforming process: A review, Appl. Energy 109, 79–93. [CrossRef] [Google Scholar]
  • Sharikov Yu.V., Petrov P.A. (2007) Universal model for catalytic reforming, Chem. Petrol. Eng. 43, 580–584. [CrossRef] [Google Scholar]
  • Froment G.F. (2001) Modeling of catalyst deactivation, Appl. Catal. A: Gen. 212, 117–128. [CrossRef] [Google Scholar]
  • Aguayo A.T., Gayubo A.G., Atutxa A., Olazar M., Bilbao J. (2002) Catalyst deactivation by coke in the transformation of aqueous ethanol into hydrocarbons. Kinetic modeling and acidity deterioration of the catalyst, Ind. Eng. Chem. Res. 41, 4216–4224. [Google Scholar]
  • Ancheyta J., Villafuerte-Macias E. (2000) Kinetic modeling of naphtha catalytic reforming reactions, Energy Fuels 14, 1032–1037. [CrossRef] [Google Scholar]
  • Stijepovic M.Z., Ostojic A., Milenkovic I., Linke P. (2009) Development of a kinetic model for catalytic reforming of naphtha and parameter estimation using industrial plant data, Energy Fuels 23, 979–983. [CrossRef] [Google Scholar]
  • Rodríguez M.A., Ancheyta J. (2011) Detailed description of kinetic and reactor modeling for naphtha catalytic reforming, Fuel 90, 3492–3508. [CrossRef] [Google Scholar]
  • Taskar U., Riggs J.B. (1997) Modeling and optimization of a semiregenerative catalytic naphtha reformer, AIChE J. 3, 740–753. [CrossRef] [Google Scholar]
  • Padmavathi G., Chaudhuri K.K. (1997) Modelling and simulation of commercial catalytic naphtha reformers, Can. J. Chem. Eng. 75, 930–938. [CrossRef] [Google Scholar]
  • Kern C., Jess A. (2005) Regeneration of coked catalysts – modelling and verification of coke burn-off in single particles and fixed bed reactors, Chem. Eng. Sci. 60, 4249–4264. [CrossRef] [Google Scholar]
  • Gyngazova M.S., Kravtsov A.V., Ivanchina E.D., Korolenko M.V., Chekantsev N.V. (2011) Reactor modeling and simulation of moving-bed catalytic reforming process, Chem. Eng. J. 176–177, 134–143. [CrossRef] [Google Scholar]
  • Belyi A.S. (2005) Reforming catalysts of the PR family: Scientific Foundations and Technological Advancement, Kinet. Catal. 46, 684–692. [CrossRef] [Google Scholar]
  • Hou W., Su H., Hu Y., Chu J. (2006) Modeling, simulation and optimization of a whole industrial catalytic naphtha reforming process on Aspen Plus platform, Chin. J. Chem. Eng. 14, 584–591. [CrossRef] [Google Scholar]
  • Lid T., Skogestad S. (2008) Data reconciliation and optimal operation of a catalytic naphtha reformer, J. Process Control. 18, 320–331. [CrossRef] [Google Scholar]
  • Hongjun Z., Mingliang S., Huixin W., Zeji L., Jiang H. (2010) Modeling and simulation of moving bed reactor for catalytic naphtha reforming, Pet. Sci. Technol. 28, 667–676. [CrossRef] [Google Scholar]
  • Syed A.A., Mohammed A.S., Mohammed A.A. (2006) Parametric study of catalytic reforming process, React. Kinet. Catal. Lett. 87, 199–206. [Google Scholar]
  • Yakupova I.V., Ivanchina E.D., Sharova E.S., Syskina A.A. (2014) Computer modelling system application for catalytic reforming unit work optimization, Procedia Chem. 10, 192–196. [CrossRef] [Google Scholar]
  • Belinskaya N.S., Ivanchina E.D., Ivashkina E.N., Chuzlov V.A., Faleev S.A. (2015) Mathematical modeling of the process of catalytic hydrodewaxing of atmospheric gasoil considering the interconnection of the technological scheme devices, Procedia Eng. 113, 68–72. [CrossRef] [Google Scholar]
  • Ivanchina E.D., Ivashkina E.N., Nazarova G.U. (2017) Mathematical modelling of catalytic cracking riser reactor, Chem. Eng. J. 329, 262–274. [CrossRef] [Google Scholar]
  • Ostrovskii N.M. (2005) Problems in the study of catalyst deactivation kinetics, Kinet. Catal. 46, 693–704. [CrossRef] [Google Scholar]
  • Shakor Z., Abdulrazak A.A., Sukkar K. (2020) A detailed reaction kinetic model of heavy Naphtha reforming, AJSE 45, 7361–7370. [Google Scholar]
  • Arani H., Shirvani M., Safdarian K., Dorostkar E. (2009) Lumping procedure for a kinetic model of catalytic naphtha reforming, Braz. J. Chem. Eng. 26, 723–732. [CrossRef] [Google Scholar]
  • Shanying H.U., Zhu X. (2004) Molecular modeling and optimization for catalytic reforming, Chem. Eng. Commun. 191, 500–512. [CrossRef] [Google Scholar]
  • Ren X.-H., Bertmer M., Stapf S., Demco D.E., Blumich B., Kern C., Jess A. (2002) Deactivation and regeneration of a naphtha reforming catalyst, Appl. Catal. A-Gen. 228, 39–52. [CrossRef] [Google Scholar]
  • Ostrovskii N.M. (2006) General equation for linear mechanisms of catalyst deactivation, Chem. Eng. J. 120, 73–82. [CrossRef] [Google Scholar]
  • Zagoruiko A.N., Belyi A.S., Smolikov M.D., Noskov A.S. (2014) Unsteady-state kinetic simulation of naphtha reforming and coke combustion processes in the fixed and moving catalyst beds, Catal. Today. 220–227, 168–177. [CrossRef] [Google Scholar]
  • Yakupova I.V., Ivanchina E.D., Sharova E.S. (2014) Mathematical modelling method application for optimisation of catalytic reforming process, Procedia Chem. 10, 197–202. [CrossRef] [Google Scholar]
  • Davis S.M., Laura F., Somorjai G.A. (1982) The reactivity and composition of strongly adsorbed carbonaceous deposits on platinum. Model of the working hydrocarbon conversion catalyst.J. Catal. 77, 2, 439. [CrossRef] [Google Scholar]
  • Dehghani O., Gholipour M.R., Shokrollahi M.S., Yancheshmeh S., Seifzadeh Haghigh S., Ghaemi M., Rahimpour M.R., Shariati A. (2013) A new configuration for decoking process in series reactors, Chem. Eng. J. 215–216, 418–431. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.