Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
Article Number 66
Number of page(s) 11
DOI https://doi.org/10.2516/ogst/2021047
Published online 05 October 2021
  • Torquato S., Labo F. (1986) Effective properties of two-phase disordered composite media: II. Evaluation of bounds on the conductivity and bulk modulus of dispersions of impenetrable spheres, Phys. Rev. B 33, 9, 6428. [CrossRef] [Google Scholar]
  • El Sayed N.A., El Sayed A.M.A. (2019) Thermal conductivity calculation from P-wave velocity and porosity assessment for sandstone reservoir rock, Geothermics 82, 91–96. [CrossRef] [Google Scholar]
  • Esteban L., Pimienta L., Sarout J., Piane C.D., Haffen S., Géraud Y., Timms N.E. (2015) Study cases of thermal conductivity prediction from P-wave velocity and porosity, Geothermics 53, 255–269. [CrossRef] [Google Scholar]
  • Zeb A., Maqsood A. (2007) Modeling of the effective thermal conductivity of consolidated porous media with different saturants: a test case of Gabbro rocks, Int. J. Thermophys. 28, 4, 1317–1386. [Google Scholar]
  • Zimmerman R.W. (1989) Thermal conductivity of fluid-saturated rocks, J. Pet. Sci. Eng. 3, 219–227. [CrossRef] [Google Scholar]
  • Anand J., Somerton W.H., Gomaa E. (1973) Predicting thermal conductivities of formations from other known properties, SPE J 13, 5, 267–273. [Google Scholar]
  • Sugawara A., Yoshizawa Y. (1962) An experimental investigation on the thermal conductivity of consolidated porous materials, J. Appl. Phys. 33, 10, 3135–3138. [CrossRef] [Google Scholar]
  • Renard Ph., de Marsily G. (1997) Calculating equivalent permeability: a review, Adv. Water Resour. 20, 5–6, 253–278. [CrossRef] [Google Scholar]
  • Preux C., Le Ravalec M., Enchéry G. (2016) Selecting an appropriate upscaled reservoir model based on connectivity analysis, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 71, 5, 60. [Google Scholar]
  • Sahimi M. (2009) Applications of Percolation Theory, Taylor & Francis [Google Scholar]
  • Chatterjee A., Verma R., Umashankar H.P., Kasthurirengan S., Shivaprakash N.C., Behera U. (2019) Heat conduction model based on percolation theory for thermalconductivity of composites with high volume fraction offiller in base matrix, Int. J. Therm. Sci. 136, 389–395. [CrossRef] [Google Scholar]
  • Torquato S. (2020) Predicting transport characteristics of hyperuniform porous media via rigorous microstructure-property relations, Adv. Water Resour. 140, 103565. [CrossRef] [Google Scholar]
  • IFPEN (2020) PumaFlow: Technical Manual. [Google Scholar]
  • Schlumberger (2016) Eclipse: reference Manual. [Google Scholar]
  • Schlumberger (2015) Intersect Version 2015.1 Beta. [Google Scholar]
  • CMG (2015) Stars User Guide – Advanced processes and thermal reservoir simulator. [Google Scholar]
  • Böttcher C.J.F. (1952) Theory of Electric Polarization, Elsevier, Amsterdam. [Google Scholar]
  • Beck A.E. (1976) An improved method of computing the thermal conductivity of fluid-filled sedimentary rocks, Geophysics 41, 133–144. [Google Scholar]
  • Hashin Z., Shtrikman H. (1962) A variational approach to the theory of the effective magnetic permeability of multiphasic materials, J. Appl. Phys. 33, 3125–3131. [CrossRef] [Google Scholar]
  • Fuchs S., Schütz F., Förster H.-J., Förster A. (2013) Evaluation of common mixing models for calculating bulk thermal conductivity of sedimentary rocks: Correction charts and new conversion equations, Geothermics 47, 40–52. [Google Scholar]
  • Zeb A., Gurmani S.F., Ali Z., Maqsood A. (2006) Simultaneous measurement of thermal conductivity, thermal diffusivity and prediction of effective thermal conductivity of porous consolidated igneous rocks at room temperature, J. Phys. D Appl. Phys. 39, 17, 3876–3881. [Google Scholar]
  • Colecchio I., Boschan A., Otero A.D., Noetinger B. (2020) On the multiscale characterization of effective hydraulic conductivity in random heterogeneous media: a historical survey and some new perspectives, Adv. Water Resour. 140, 103594. [Google Scholar]
  • Asaad Y. (1955) A study of the thermal conductivity of fluid bearing porous rocks, Ph.D. dissertation, Ed. Univ. California, Berkeley, CA. [Google Scholar]
  • Sugawara A., Yoshizawa Y. (1961) An Investigation on the thermal conductivity of porous materials and its application to porous rook, Australian J. Phys. 14, 4, 469–480. [Google Scholar]
  • Veerendra K., Chaudhary D.R. (1980) Ind. J. Pure Appl. Phys. 18, 984. [Google Scholar]
  • Krupiczka R. (1967) Analysis of thermal conductivity in granular materials, Int. Chem. Eng. 7, 122–144. [Google Scholar]
  • Fricke H. (1924) A mathematical treatment of the electric conductivity and capacity of disperse systems, Phys. Rev. 24, 575–587. [Google Scholar]
  • Maxwell J.C. (1892) A treatise on electricity and magnetism, Vol. 1, 3rd ed. Clarendon Press, Ed. Oxford. [Google Scholar]
  • Clauser C., Huenges E. (1995) Thermal conductivity of rocks and minerals in rock physics and phase relations: a handbook of physical constants, Vol. 3, T.J. Ahrens (ed.), American Geophysical Union, Washington, USA. [Google Scholar]
  • Orlander T., Adamopoulou E., Jerver Asmussen J., Marczyski A.A., Milsch H., Pasquinelli L., Fabricius I.L. (2018) Thermal conductivity of sandstones from Biot’s coefficient, Geophysics 83, 5, 173–185. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.