Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
Article Number 6
Number of page(s) 15
DOI https://doi.org/10.2516/ogst/2020088
Published online 11 January 2021
  • Hama S., Noda H., Kondo A. (2018) How lipase technology contributes to the evolution of biodiesel production using multiple feedstocks, Curr. Opin. Biotechnol. 50, 57–64. [Google Scholar]
  • De Oliveira F.C., Coelho S.T. (2017) History, evolution, and environmental impact of biodiesel in Brazil: A review, Renew. Sustain. Energy Rev. 75, 168–179. [CrossRef] [Google Scholar]
  • Li J., Guo Z. (2017) Structure evolution of synthetic amino acids-derived basic ionic liquids for catalytic production of biodiesel, ACS Sustain. Chem. Eng. 5, 1, 1237–1247. [Google Scholar]
  • Tian K., Tai K., Chua B.J.W., Li Z. (2017) Directed evolution of Thermomyces lanuginosus lipase to enhance methanol tolerance for efficient production of biodiesel from waste grease, Bioresour. Technol. 245, 1491–1497. [Google Scholar]
  • Merchan-Merchan W., Abdihamzehkolaei A., Merchan-Breuer D.A. (2018) Formation and evolution of carbon particles in coflow diffusion air flames of vaporized biodiesel, diesel and biodiesel-diesel blends, Fuel 226, 263–277. [CrossRef] [Google Scholar]
  • Nogueira L.A., Capaz R.S., Souza S.P., Seabra J.E. (2016) Biodiesel program in Brazil: learning curve over ten years (2005–2015), Biofuels Bioprod. Biorefin. 10, 6, 728–737. [CrossRef] [Google Scholar]
  • Gao Z., Zhu L., Liu C., Li A., He Z., Zhang C., Huang Z. (2017) Comparison of soot formation, evolution, and oxidation reactivity of two biodiesel surrogates, Energy Fuels 31, 8, 8655–8664. [Google Scholar]
  • Moreno-Pérez O.M., Marcossi G.P., Ortiz-Miranda D. (2017) Taking stock of the evolution of the biodiesel industry in Brazil: Business concentration and structural traits, Energy Policy 110, 525–533. [Google Scholar]
  • Mahi M.R., Ouaar F., Negadi A., Bahadur I., Negadi L. (2018) Excess/deviation properties of binary mixtures of 2, 5-dimethylfuran with furfuryl alcohol, methyl isobutyl ketone, 1-butanol and 2-butanol at temperature range of (293.15–323.15) K, Oil & Gas Sci. Technol. - Rev. IFP Energies nouvelles 73, 64. [CrossRef] [Google Scholar]
  • Lee S., Lee C.S., Park S., Gupta J.G., Maurya R.K., Agarwal A.K. (2017) Spray characteristics, engine performance and emissions analysis for Karanja biodiesel and its blends, Energy 119, 138–151. [CrossRef] [Google Scholar]
  • Sudhakar K., Anand T., Srivastava T., Premalatha M. (2013) Assessment of carbon mitigation potential of various biofuels in Indian context, Int. J. ChemTech Res. 5, 5, 2456–2461. [Google Scholar]
  • Zhou J., Xiong Y., Gong Y., Liu X. (2017) Analysis of the oxidative degradation of biodiesel blends using FTIR, UV–Vis, TGA and TD-DES methods, Fuel 202, 23–28. [CrossRef] [Google Scholar]
  • Chong C.T., Ng J.H., Ahmad S., Rajoo S. (2015) Oxygenated palm biodiesel: Ignition, combustion and emissions quantification in a light-duty diesel engine, Energy Convers. Manage. 101, 317–325. [CrossRef] [Google Scholar]
  • Boutesteijn C., Drabik D., Venus T.J. (2017) The interaction between EU biofuel policy and first-and second-generation biodiesel production, Ind. Crops Prod. 106, 124–129. [Google Scholar]
  • Rahman M.M., Rasul M., Hassan N.M.S. (2017) Study on the tribological characteristics of Australian native first generation and second generation biodiesel fuel, Energies 10, 1, 55. [Google Scholar]
  • Bahadur S., Goyal P., Sudhakar K., Bijarniya J.P. (2015) A comparative study of ultrasonic and conventional methods of biodiesel production from mahua oil, Biofuels 6, 1–2, 107–113. https://doi.org/10.1080/17597269.2015.1057790. [Google Scholar]
  • Devarajan Y., Kumar Jayabal R., Ragupathy D., Venu H. (2017) Emissions analysis on second generation biodiesel, Front. Environ. Sci. Eng. 11, 1, 3. [Google Scholar]
  • Belletante S., Montastruc L., Meyer M., Hermansyah H., Negny S. (2020) Multiproduct biorefinery optimal design: application to the acetone-butanol-ethanol system, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 75, 9. https://doi.org/10.2516/ogst/2020002. [CrossRef] [Google Scholar]
  • Kowalska M., Wegierek-Ciuk A., Brzoska K., Wojewodzka M., Meczynska-Wielgosz S., Gromadzka-Ostrowska J., Mruk R., Øvrevik J., Kruszewski M., Lankoff A. (2017) Genotoxic potential of diesel exhaust particles from the combustion of first-and second-generation biodiesel fuels – The FuelHealth project, Environ. Sci. Pollut. Res. 24, 31, 24223–24234. [CrossRef] [Google Scholar]
  • Sudhakar K., Rajesh M., Premalatha M. (2012) A mathematical model to assess the potential of algal bio-fuels in India, Energy Sources, Part A Recover. Util. Environ. Eff. 34, 12, 1114–1120. https://doi.org/10.1080/15567036.2011.645121. [CrossRef] [Google Scholar]
  • Zhong W., Xuan T., He Z., Wang Q., Li D., Zhang X., Huang Y.Y. (2016) Experimental study of combustion and emission characteristics of diesel engine with diesel/second-generation biodiesel blending fuels, Energy Convers. Manage. 121, 241–250. [CrossRef] [Google Scholar]
  • Erdiwansyah, Mamat R., Sani M.S.M., Sudhakar K., Kadarohman A., Sardjono R.E. (2019) An overview of higher alcohol and biodiesel as alternative fuels in engines, Energy Rep. 5, 467–479. https://doi.org/10.1016/j.egyr.2019.04.009. [CrossRef] [Google Scholar]
  • Jamaluddin N.A.M., Riayatsyah T.M.I., Silitonga A.S., Mofijur M., Shamsuddin A.H., Ong H.C., Rahman S.M. (2019) Techno-economic analysis and physicochemical properties of Ceiba pentandra as second-generation biodiesel based on ASTM D6751 and EN 14214, Processes 7, 9, 636. [CrossRef] [Google Scholar]
  • Rajak U., Verma T.N. (2020) Influence of combustion and emission characteristics on a compression ignition engine from a different generation of biodiesel, Eng. Sci. Technol. Int. J. 23, 1, 10–20. [Google Scholar]
  • Bahadur S., Goyal P., Sudhakar K. (2015) Ultrasonic assisted transesterification of neem oil for biodiesel production, Energy Sources Part A Recovery Utilization & Env. Effects 37, 17, 1921–1927. https://doi.org/10.1080/15567036.2014.911783. [CrossRef] [Google Scholar]
  • Ghasemi A., Moosavi-Nasab M. (2020) Production of second-generation biodiesel using low-quality date fruits, Biotechnol. Rep. 27, e00480. [CrossRef] [Google Scholar]
  • Foteinis S., Chatzisymeon E., Litinas A., Tsoutsos T. (2020) Used-cooking-oil biodiesel: Life cycle assessment and comparison with first-and third-generation biofuel, Renew. Energy 153, 588–600. [Google Scholar]
  • Mofijur M., Rasul M.G., Hassan N.M.S., Nabi M.N. (2019) Recent development in the production of third generation biodiesel from microalgae, Energy Procedia 156, 53–58. [Google Scholar]
  • Zhang Z., Bi G., Zhang H., Zhang A., Li X., Xie J. (2019) Highly active and selective hydrodeoxygenation of oleic acid to second generation bio-diesel over SiO2-supported CoxNi1−xP catalysts, Fuel 247, 26–35. [CrossRef] [Google Scholar]
  • Mofijur M., Siddiki S.Y.A., Ahmed M.B., Djavanroodi F., Fattah I.R., Ong H.C., Mahlia T.M.I. (2020) Effect of nanocatalysts on the transesterification reaction of first, second and third generation biodiesel sources – A mini-review, Chemosphere, 128642. [Google Scholar]
  • Kamil M., Ramadan K., Ghenai C., Olabi A.G., Nazzal I.T. (2019) Emissions from combustion of second-generation biodiesel produced from seeds of date palm fruit (Phoenix dactylifera L.), Appl. Sci. 9, 18, 3720. [CrossRef] [Google Scholar]
  • Boopathi D., Thiyagarajan S., Edwin Geo V., Madhankumar S. (2020) Effect of the second generation and third generation biofuel blend on performance, emission and combustion characteristics of CI engine, Int. J. Ambient Energy 41, 7, 767–774. [CrossRef] [Google Scholar]
  • Singh D., Sharma D., Soni S.L., Sharma S., Sharma P.K., Jhalani A. (2020) A review on feedstocks, production processes, and yield for different generations of biodiesel, Fuel 262, 116553. [CrossRef] [Google Scholar]
  • Abdullah B., Muhammad S.A.F.A.S., Shokravi Z., Ismail S., Kassim K.A., Mahmood A.N., Aziz M.M.A. (2019) Fourth generation biofuel: A review on risks and mitigation strategies, Renew. Sustain. Energy Rev. 107, 37–50. [CrossRef] [Google Scholar]
  • Dutta K., Daverey A., Lin J.G. (2014) Evolution retrospective for alternative fuels: First to fourth generation, Renew. Energy 69, 114–122. [Google Scholar]
  • Mat Aron N.S., Khoo K.S., Chew K.W., Show P.L., Chen W.H., Nguyen T.H.P. (2020) Sustainability of the four generations of biofuels–A review, Int. J. Energy Res. 44, 12, 9266–9282. [Google Scholar]
  • Shokravi Z., Shokravi H., Aziz M.M.A., Shokravi H. (2019) The Fourth-Generation Biofuel: A Systematic Review on Nearly Two Decades of Research from 2008 to 2019, in: Aziz Md Maniruzzaman Bin A. (ed), Fossil free fuels trends renewable energy, Taylor and Francis, London. [Google Scholar]
  • Moravvej Z., Makarem M.A., Rahimpour M.R. (2019) The fourth generation of biofuel, in: Second and third generation of feedstocks, Elsevier, Netherland, pp. 557–597. [CrossRef] [Google Scholar]
  • Alalwan H.A., Alminshid A.H., Aljaafari H.A. (2019) Promising evolution of biofuel generations. Subject review, Renew. Energy Focus 28, 127–139. [CrossRef] [Google Scholar]
  • Oliveira L.E., Cedeno R.F., Chavez E.G., Gelli V.C., Masarin F. (2019) Red macroalgae kappaphycus alvarezii as feedstock for nutraceuticals, pharmaceuticals and fourth generation biofuel production, Red 17, 546–549. [Google Scholar]
  • Chowdhury H., Loganathan B. (2019) Third-generation biofuels from microalgae: a review, Curr. Opin. Green Sustain. Chem. 20, 39–44. [Google Scholar]
  • Chowdhury H., Loganathan B., Mustary I., Alam F., Mobin S.M. (2019) Algae for biofuels: The third generation of feedstock, in: Second and third generation of feedstocks, Elsevier, Netherland, pp. 323–344. [CrossRef] [Google Scholar]
  • Nagler A., Gerace S. (2020) First and second generation biofuels, Fuel 6, 12. [Google Scholar]
  • Boboescu I.Z., Chemarin F., Beigbeder J.B., de Vasconcelos B.R., Munirathinam R., Ghislain T., Lavoie J.M. (2019) Making next-generation biofuels and biocommodities a feasible reality, Curr. Opin. Green Sustain. Chem. 20, 25–32. [Google Scholar]
  • Wu Y., Ferns J., Li H., Andrews G. (2017) Investigation of combustion and emission performance of hydrogenated vegetable oil (HVO) diesel, SAE Int. J. Fuels Lubr. 10, 3, 895–903. [Google Scholar]
  • Gottschalk P., Brodesser B., Poncelet D., Jaeger H., Rennhofer H., Cole S. (2018) Formation of essential oil containing microparticles comprising a hydrogenated vegetable oil matrix and characterisation thereof, J. Microencapsulation. 35, 6, 513–521. [CrossRef] [Google Scholar]
  • Bezergianni S., Dimitriadis A. (2013) Comparison between different types of renewable diesel, Renew. Sustain. Energy Rev. 21, 110–116. [CrossRef] [Google Scholar]
  • Hamdan S.H., Chong W.W.F., Ng J.H., Ghazali M., Wood R.J.K. (2017) Influence of fatty acid methyl ester composition on tribological properties of vegetable oils and duck fat derived biodiesel, Tribol. Int. 113, 76–82. [Google Scholar]
  • Vargas-Bello-Pérez E., Fehrmann-Cartes K., Íñiguez-González G., Toro-Mujica P., Garnsworthy P.C. (2015) Chemical composition, fatty acid composition, and sensory characteristics of Chanco cheese from dairy cows supplemented with soybean and hydrogenated vegetable oils, J. Dairy Sci. 98, 1, 111–117. [Google Scholar]
  • Zupanič N., Hribar M., Pivk Kupirovič U., Kušar A., Žmitek K., Pravst I. (2018) Limiting trans fats in foods: Use of partially hydrogenated vegetable oils in prepacked foods in Slovenia, Nutrients 10, 3, 355. [Google Scholar]
  • Ramírez-Gómez N.O., Acevedo N.C., Toro-Vázquez J.F., Ornelas-Paz J.J., Dibildox-Alvarado E., Pérez-Martínez J.D. (2016) Phase behavior, structure and rheology of candelilla wax/fully hydrogenated soybean oil mixtures with and without vegetable oil, Food Res. Int. 89, 828–837. [Google Scholar]
  • Kubant R., Poon A.N., Sánchez-Hernández D., Domenichiello A.F., Huot P.S.P., Pannia E., Anderson G.H. (2015) A comparison of effects of lard and hydrogenated vegetable shortening on the development of high-fat diet-induced obesity in rats, Nutr. Diab. 5, 12, e188–e188. [CrossRef] [Google Scholar]
  • Domínguez-Barroso M.V., Herrera C., Larrubia M.A., Alemany L.J. (2016) Diesel oil-like hydrocarbon production from vegetable oil in a single process over Pt–Ni/Al2O3 and Pd/C combined catalysts, Fuel Process. Technol. 148, 110–116. [CrossRef] [Google Scholar]
  • Manchanda T., Tyagi R., Sharma D.K. (2018) Comparison of fuel characteristics of green (renewable) diesel with biodiesel obtainable from algal oil and vegetable oil, Energy Sources Part A Recovery Utilization & Env. Effects 40, 1, 54–59. [CrossRef] [Google Scholar]
  • Yoshinaga K., Kawamura Y., Kitayama T., Nagai T., Mizobe H., Kojima K., Gotoh N. (2015) Regiospecific distribution of trans-octadecenoic acid positional isomers in triacylglycerols of partially hydrogenated vegetable oil and ruminant fat, J. Oleo Sci. 64, 6, 617–624. [CrossRef] [PubMed] [Google Scholar]
  • Glisic S.B., Pajnik J.M., Orlović A.M. (2016) Process and techno-economic analysis of green diesel production from waste vegetable oil and the comparison with ester type biodiesel production, Appl. Energy 170, 176–185. [Google Scholar]
  • Delmonte P. (2016) Evaluation of poly (90% biscyanopropyl/10% cyanopropylphenyl siloxane) capillary columns for the gas chromatographic quantification of trans fatty acids in non-hydrogenated vegetable oils, J. Chromatogr. A 1460, 160–172. [CrossRef] [PubMed] [Google Scholar]
  • Dohnalova L., Bucek P., Vobornik P., Dohnal V. (2017) Determination of nickel in hydrogenated fats and selected chocolate bars in Czech Republic, Food Chem. 217, 456–460. [CrossRef] [PubMed] [Google Scholar]
  • Pechout M., Kotek M., Jindra P., Macoun D., Hart J., Vojtisek-Lom M. (2019) Comparison of hydrogenated vegetable oil and biodiesel effects on combustion, unregulated and regulated gaseous pollutants and DPF regeneration procedure in a Euro6 car, Sci. Total Env. 696, 133748. [CrossRef] [Google Scholar]
  • Nordelöf A., Romare M., Tivander J. (2019) Life cycle assessment of city buses powered by electricity, hydrogenated vegetable oil or diesel, Transp. Res. Part D Transp. Env. 75, 211–222. [CrossRef] [Google Scholar]
  • Krivopolianskii V., Bjørgen K.O.P., Emberson D., Ushakov S., Æsøy V., Løvås T. (2019) Experimental study of ignition delay, combustion, and NO emission characteristics of hydrogenated vegetable oil, SAE Int. J. Fuels Lubr. 12, 04–12-01-0002, 29–42. [Google Scholar]
  • Adu-Mensah D., Mei D., Zuo L., Zhang Q., Wang J. (2019) A review on partial hydrogenation of biodiesel and its influence on fuel properties, Fuel 251, 660–668. [CrossRef] [Google Scholar]
  • Rajkumar S., Thangaraja J. (2019) Effect of biodiesel, biodiesel binary blends, hydrogenated biodiesel and injection parameters on NOx and soot emissions in a turbocharged diesel engine, Fuel 240, 101–118. [CrossRef] [Google Scholar]
  • Pachiannan T., Zhong W., Xuan T., Li B., He Z., Wang Q., Yu X. (2019) Simultaneous study on spray liquid length, ignition and combustion characteristics of diesel and hydrogenated catalytic biodiesel in a constant volume combustion chamber, Renew. Energy 140, 761–771. [Google Scholar]
  • Singh D., Sharma D., Soni S.L., Sharma S., Kumari D. (2019) Chemical compositions, properties, and standards for different generation biodiesels: A review, Fuel 253, 60–71. [CrossRef] [Google Scholar]
  • Deshmukh S., Kumar R., Bala K. (2019) Microalgae biodiesel: A review on oil extraction, fatty acid composition, properties and effect on engine performance and emissions, Fuel Process. Technol. 191, 232–247. [CrossRef] [Google Scholar]
  • Rezania S., Oryani B., Park J., Hashemi B., Yadav K.K., Kwon E.E., Cho J. (2019) Review on transesterification of non-edible sources for biodiesel production with a focus on economic aspects, fuel properties and by-product applications, Energy Convers. Manage. 201, 112155. [CrossRef] [Google Scholar]
  • Karthickeyan V. (2019) Effect of cetane enhancer on Moringa oleifera biodiesel in a thermal coated direct injection diesel engine, Fuel 235, 538–550. [CrossRef] [Google Scholar]
  • Nogales-Delgado S., Encinar J.M., Guiberteau A., Márquez S. (2020) The effect of antioxidants on corn and sunflower biodiesel properties under extreme oxidation conditions, J. Am. Oil Chem. Soc. 97, 2, 201–212. [Google Scholar]
  • Seffati K., Honarvar B., Esmaeili H., Esfandiari N. (2019) Enhanced biodiesel production from chicken fat using CaO/CuFe2O4 nanocatalyst and its combination with diesel to improve fuel properties, Fuel 235, 1238–1244. [CrossRef] [Google Scholar]
  • Gurusamy S., Kulanthaisamy M.R., Hari D.G., Veleeswaran A., Thulasinathan B., Muthuramalingam J.B., Balasubramani R., Chang S.W., Arasu M.V., Al-Dhabi N.A., Selvaraj A. (2019) Environmental friendly synthesis of TiO2-ZnO nanocomposite catalyst and silver nanomaterials for the enhanced production of biodiesel from Ulva lactuca seaweed and potential antimicrobial properties against the microbial pathogens, J. Photochem. Photobiol. B: Biol. 193, 118–130. [CrossRef] [Google Scholar]
  • Chammoun N., Geller D.P., Das K.C. (2013) Fuel properties, performance testing and economic feasibility of Raphanus sativus (oilseed radish) biodiesel, Ind. Crops Prod. 45, 155–159. [Google Scholar]
  • Mahlia T.M.I., Syazmi Z.A.H.S., Mofijur M., Abas A.P., Bilad M.R., Ong H.C., Silitonga A.S. (2020) Patent landscape review on biodiesel production: Technology updates, Renew. Sustain. Energy Rev. 118, 109526. [CrossRef] [Google Scholar]
  • Deshmukh S., Bala K., Kumar R. (2019) Selection of microalgae species based on their lipid content, fatty acid profile and apparent fuel properties for biodiesel production, Env. Sci. Pollut. Res. 26, 24, 24462–24473. [CrossRef] [Google Scholar]
  • Nouri H., Moghimi H., Rad M.N., Ostovar M., Mehr S.S.F., Ghanaatian F., Talebi A.F. (2019) Enhanced growth and lipid production in oleaginous fungus, Sarocladium kiliense ADH17: Study on fatty acid profiling and prediction of biodiesel properties, Renew. Energy 135, 10–20. [Google Scholar]
  • Ong H.C., Mofijur M., Silitonga A.S., Gumilang D., Kusumo F., Mahlia T.M.I. (2020) Physicochemical properties of biodiesel synthesised from grape seed, philippine tung, kesambi, and palm oils, Energies 13, 6, 1319. [Google Scholar]
  • Sia C.B., Kansedo J., Tan Y.H., Lee K.T. (2020) Evaluation on biodiesel cold flow properties, oxidative stability and enhancement strategies: A review, Biocatal. Agric. Biotechnol. 24, 101514. [Google Scholar]
  • Trivedi T., Jain D., Mulla N.S., Mamatha S.S., Damare S.R., Sreepada R.A., Kumar S., Gupta V. (2019) Improvement in biomass, lipid production and biodiesel properties of a euryhaline Chlorella vulgaris NIOCCV on mixotrophic cultivation in wastewater from a fish processing plant, Renew. Energy 139, 326–335. [Google Scholar]
  • Zöldy M. (2020) Fuel properties of butanol-hydrogenated vegetable oil blends as a diesel extender option for internal combustion engines, Period. Polytech. Chem. Eng. 64, 2, 205–212. [CrossRef] [Google Scholar]
  • Adu-Mensah D., Mei D., Zuo L., Zhang Q., Wang J. (2019) A review on partial hydrogenation of biodiesel and its influence on fuel properties, Fuel 251, 660–668. [CrossRef] [Google Scholar]
  • Šimáček P., Souček I., Pospíšil M., Vrtiška D., Kittel H. (2019) Impact of hydrotreated vegetable oil and biodiesel on properties in blends with mineral diesel fuel, Therm. Sci. 00, 315–315. [Google Scholar]
  • Dobrzyńska E., Szewczyńska M., Pośniak M., Szczotka A., Puchałka B., Woodburn J. (2020) Exhaust emissions from diesel engines fueled by different blends with the addition of nanomodifiers and hydrotreated vegetable oil HVO, Env. Pollut. 259, 113772. [CrossRef] [Google Scholar]
  • Eller Z., Varga Z., Hancsók J. (2019) Renewable jet fuel from kerosene/coconut oil mixtures with catalytic hydrogenation, Energy Fuels 33, 7, 6444–6453. [Google Scholar]
  • Raza M.Q., Arshad M.U., Arshad M.S., Anjum F.M., Imran A., Ahmed A., Munir H. (2020) Consequences of hydrogenated vegetable fat substitution with Ajwa seed oil on physicochemical and nutritional aspects of functional cookies, Food Sci. Nutr. 8, 3, 1365–1374. [CrossRef] [PubMed] [Google Scholar]
  • Albrand P., Julcour C., Gerbaud V., Billet A.M. (2020) Accurate hydrogenated vegetable oil viscosity predictions for monolith reactor simulations, Chem. Eng. Sci. 214, 115388. [Google Scholar]
  • Rodríguez-Fernández J., Hernández J.J., Calle-Asensio A., Ramos Á., Barba J. (2019) Selection of blends of diesel fuel and advanced biofuels based on their physical and thermochemical properties, Energies 12, 11, 2034. [Google Scholar]
  • Vargas-Bello-Pérez E., Loor J.J., Garnsworthy P.C. (2020) Fatty acid transport in plasma from cows treated with ruminal pulses of fish oil and partially hydrogenated vegetable oil, Livest. Sci. 236, 104018. [Google Scholar]
  • McCaffery C., Karavalakis G., Durbin T., Jung H., Johnson K. (2020) Engine-out emissions characteristics of a light duty vehicle operating on a hydrogenated vegetable oil renewable diesel. SAE Technical Paper 2020-01-0337. https://doi.org/10.4271/2020-01-0337. [Google Scholar]
  • Kabir H., Zhu H., May J., Hamal K., Kan Y., Williams T., Pandhi T. (2019) The sp2-sp3 carbon hybridization content of nanocrystalline graphite from pyrolyzed vegetable oil, comparison of electrochemistry and physical properties with other carbon forms and allotropes, Carbon 144, 831–840. [Google Scholar]
  • Sonthalia A., Kumar N. (2019) Hydroprocessed vegetable oil as a fuel for transportation sector: A review, J. Energy Inst. 92, 1, 1–17. [CrossRef] [Google Scholar]
  • Konne J.L., Onobun J.D. (2020) Production of biodiesel from dacryodes edulis seeds oil using green ZnO and hydrogenated ZnO catalysts, J. Chem. Soc. Nigeria 45, 2, 259–264. [Google Scholar]
  • Mathew B.C., Thangaraja J., Sivaramakrishna A. (2019) Combustion, performance and emission characteristics of blends of methyl esters and modified methyl esters of karanja and waste cooking oil on a turbocharged CRDI engine, Clean Technol. Env. Policy 21, 9, 1791–1807. [CrossRef] [Google Scholar]
  • Dujjanutat P., Kaewkannetra P. (2020) Production of bio-hydrogenated kerosene by catalytic hydrocracking from refined bleached deodorised palm/palm kernel oils, Renew. Energy 147, 464–472. [Google Scholar]
  • Sindhu R., Binod P., Pandey A., Ankaram S., Duan Y., Awasthi M.K. (2019) Biofuel production from biomass: Toward sustainable development, in: Current developments in biotechnology and bioengineering, Elsevier, London, pp. 79–92. [CrossRef] [Google Scholar]
  • Fazal M.A., Rubaiee S., Al-Zahrani A. (2019) Overview of the interactions between automotive materials and biodiesel obtained from different feedstocks, Fuel Process. Technol. 196, 106178. [CrossRef] [Google Scholar]
  • Sundus F., Fazal M.A., Masjuki H.H. (2017) Tribology with biodiesel: A study on enhancing biodiesel stability and its fuel properties, Renew. Sustain. Energy Rev. 70, 399–412. [CrossRef] [Google Scholar]
  • Hari T.K., Yaakob Z., Binitha N.N. (2015) Aviation biofuel from renewable resources: Routes, opportunities and challenges, Renew. Sustain. Energy Rev. 42, 1234–1244. [CrossRef] [Google Scholar]
  • Su Y., Zhang P., Su Y. (2015) An overview of biofuels policies and industrialization in the major biofuel producing countries, Renew. Sustain. Energy Rev. 50, 991–1003. [CrossRef] [Google Scholar]
  • Cremonez P.A., Feroldi M., de Oliveira C.D.J., Teleken J.G., Alves H.J., Sampaio S.C. (2015) Environmental, economic and social impact of aviation biofuel production in Brazil, New Biotechnol. 32, 2, 263–271. [CrossRef] [Google Scholar]
  • Ben-Iwo J., Manovic V., Longhurst P. (2016) Biomass resources and biofuels potential for the production of transportation fuels in Nigeria, Renew. Sustain. Energy Rev. 63, 172–192. [CrossRef] [Google Scholar]
  • Anuar M.R., Abdullah A.Z. (2016) Challenges in biodiesel industry with regards to feedstock, environmental, social and sustainability issues: A critical review, Renew. Sustain. Energy Rev. 58, 208–223. [CrossRef] [Google Scholar]
  • Efroymson R.A., Dale V.H. (2015) Environmental indicators for sustainable production of algal biofuels, Ecol. Indic. 49, 1–13. [Google Scholar]
  • Kan T., Strezov V., Evans T. (2016) Effect of the heating rate on the thermochemical behavior and biofuel properties of sewage sludge pyrolysis, Energy Fuels 30, 3, 1564–1570. [Google Scholar]
  • Gnanasekaran S., Saravanan N., Ilangkumaran M. (2016) Influence of injection timing on performance, emission and combustion characteristics of a DI diesel engine running on fish oil biodiesel, Energy 116, 1218–1229. [CrossRef] [Google Scholar]
  • Gaurav A., Ng F.T., Rempel G.L. (2016) A new green process for biodiesel production from waste oils via catalytic distillation using a solid acid catalyst – Modeling, economic and environmental analysis, Green Energy Env. 1, 1, 62–74. [CrossRef] [Google Scholar]
  • Joshi G., Pandey J.K., Rana S., Rawat D.S. (2017) Challenges and opportunities for the application of biofuel, Renew. Sustain. Energy Rev. 79, 850–866. [CrossRef] [Google Scholar]
  • Caliskan H. (2017) Environmental and enviroeconomic researches on diesel engines with diesel and biodiesel fuels, J. Clean. Prod. 154, 125–129. [Google Scholar]
  • Alam F., Mobin S., Chowdhury H. (2015) Third generation biofuel from Algae, Procedia Eng. 105, 763–768. [Google Scholar]
  • Farooq M., Ramli A., Naeem A. (2015) Biodiesel production from low FFA waste cooking oil using heterogeneous catalyst derived from chicken bones, Renew. Energy 76, 362–368. [Google Scholar]
  • Vassilev S.V., Vassileva C.G. (2016) Composition, properties and challenges of algae biomass for biofuel application: An overview, Fuel 181, 1–33. [CrossRef] [Google Scholar]
  • Hasan M.M., Rahman M.M. (2017) Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review, Renew. Sustain. Energy Rev. 74, 938–948. [CrossRef] [Google Scholar]
  • Dickinson S., Mientus M., Frey D., Amini-Hajibashi A., Ozturk S., Shaikh F., Sengupta D., El-Halwagi M.M. (2017) A review of biodiesel production from microalgae, Clean Technol. Env. Policy 19, 3, 637–668. [CrossRef] [Google Scholar]
  • Gaurav N., Sivasankari S., Kiran G.S., Ninawe A., Selvin J. (2017) Utilization of bioresources for sustainable biofuels: A review, Renew. Sustain. Energy Rev. 73, 205–214. [CrossRef] [Google Scholar]
  • Robertson G.P., Hamilton S.K., Barham B.L., Dale B.E., Izaurralde R.C., Jackson R.D., Landis D.A., Swinton S.M., Thelen K.D., Tiedje J.M. (2017) Cellulosic biofuel contributions to a sustainable energy future: Choices and outcomes, Science 356, 6345, 938–948. [Google Scholar]
  • Yadava S., Maitra S.S. (2017) Molecular detection of Methylotrophs from an Indian landfill site and their potential for biofuel production, Glob. Nest J. 19, 3, 533–539. [CrossRef] [Google Scholar]
  • Dash S.K., Lingfa P. (2017) A review on production of biodiesel using catalyzed transesterification, in: AIP Conference Proceedings (Vol. 1859, No. 1), AIP Publishing LLC, USA, 020100 p. [Google Scholar]
  • Boonrod B., Prapainainar C., Narataruksa P., Kantama A., Saibautrong W., Sudsakorn K., Mungcharoen T., Prapainainar P. (2017) Evaluating the environmental impacts of bio-hydrogenated diesel production from palm oil and fatty acid methyl ester through life cycle assessment, J. Clean. Prod. 142, 1210–1221. [Google Scholar]
  • Pragya N., Pandey K.K. (2016) Life cycle assessment of green diesel production from microalgae, Renew. Energy 86, 623–632. [Google Scholar]
  • Capaz R.S., Seabra J.E.A. (2016) Life cycle assessment of biojet fuels, in: Biofuels for aviation, Academic Press, USA, pp. 279–294. [CrossRef] [Google Scholar]
  • Rajaeifar M.A., Akram A., Ghobadian B., Rafiee S., Heijungs R., Tabatabaei M. (2016) Environmental impact assessment of olive pomace oil biodiesel production and consumption: A comparative lifecycle assessment, Energy 106, 87–102. [CrossRef] [Google Scholar]
  • Matzen M., Demirel Y. (2016) Methanol and dimethyl ether from renewable hydrogen and carbon dioxide: Alternative fuels production and life-cycle assessment, J. Clean. Prod. 139, 1068–1077. [Google Scholar]
  • Wong A.J. (2016) Life cycle assessment of lignocellulosic biomass conversion pathways to hydrogenation derived renewable diesel, Int. J. Life Cycle Assess. 21, 10, 1404–1424. [Google Scholar]
  • Rajaeifar M.A., Abdi R., Tabatabaei M. (2017) Expanded polystyrene waste application for improving biodiesel environmental performance parameters from life cycle assessment point of view, Renew. Sustain. Energy Rev. 74, 278–298. [CrossRef] [Google Scholar]
  • Glisic S.B., Pajnik J.M., Orlović A.M. (2016) Process and techno-economic analysis of green diesel production from waste vegetable oil and the comparison with ester type biodiesel production, Appl. Energy 170, 176–185. [Google Scholar]
  • Mahbub N., Oyedun A.O., Kumar A., Oestreich D., Arnold U., Sauer J. (2017) A life cycle assessment of oxymethylene ether synthesis from biomass-derived syngas as a diesel additive, J. Clean. Prod. 165, 1249–1262. [Google Scholar]
  • Wong A., Zhang H., Kumar A. (2016) Life cycle water footprint of hydrogenation-derived renewable diesel production from lignocellulosic biomass, Water Res. 102, 330–345. [CrossRef] [PubMed] [Google Scholar]
  • Yang J., Fujiwara T., Geng Q. (2017) Life cycle assessment of biodiesel fuel production from waste cooking oil in Okayama City, J. Mater. Cycles Waste Manage. 19, 4, 1457–1467. [CrossRef] [Google Scholar]
  • Wong A., Zhang H., Kumar A. (2016) Life cycle assessment of renewable diesel production from lignocellulosic biomass, Int. J. Life Cycle Assess. 21, 10, 1404–1424. [Google Scholar]
  • Zhou H., Qian Y., Kraslawski A., Yang Q., Yang S. (2017) Life-cycle assessment of alternative liquid fuels production in China, Energy 139, 507–522. [CrossRef] [Google Scholar]
  • Vahidi E., Zhao F. (2017) Environmental life cycle assessment on the separation of rare earth oxides through solvent extraction, J. Env. Manage. 203, 255–263. [CrossRef] [Google Scholar]
  • Sorunmu Y.E., Billen P., Elkasabi Y., Mullen C.A., Macken N.A., Boateng A.A., Spatari S. (2017) Fuels and chemicals from equine-waste-derived tail gas reactive pyrolysis oil: technoeconomic analysis, environmental and exergetic life cycle assessment, ACS Sustain. Chem. Eng. 5, 10, 8804–8814. [Google Scholar]
  • Portugal-Pereira J., Nakatani J., Kurisu K., Hanaki K. (2016) Life cycle assessment of conventional and optimised Jatropha biodiesel fuels, Renew. Energy 86, 585–593. [Google Scholar]
  • Wu Y., Ferns J., Li H., Andrews G. (2017) Investigation of combustion and emission performance of hydrogenated vegetable oil (HVO) diesel, SAE Int. J. Fuels Lubr. 10, 3, 895–903. [Google Scholar]
  • Hari T.K., Yaakob Z., Binitha N.N. (2015) Aviation biofuel from renewable resources: Routes, opportunities and challenges, Renew. Sustain. Energy Rev. 42, 1234–1244. [CrossRef] [Google Scholar]
  • Su Y., Zhang P., Su Y. (2015) An overview of biofuels policies and industrialization in the major biofuel producing countries, Renew. Sustain. Energy Rev. 50, 991–1003. [CrossRef] [Google Scholar]
  • Mukherjee I., Sovacool B.K. (2014) Palm oil-based biofuels and sustainability in southeast Asia: A review of Indonesia, Malaysia, and Thailand, Renew. Sustain. Energy Rev. 37, 1–12. [CrossRef] [Google Scholar]
  • Gashaw A., Teshita A. (2014) Production of biodiesel from waste cooking oil and factors affecting its formation: A review, Int. J. Renew. Sustain. Energy 3, 5, 92–98. [Google Scholar]
  • Cremonez P.A., Feroldi M., de Oliveira C.D.J., Teleken J.G., Alves H.J., Sampaio S.C. (2015) Environmental, economic and social impact of aviation biofuel production in Brazil, New Biotechnol. 32, 2, 263–271. [CrossRef] [Google Scholar]
  • Efroymson R.A., Dale V.H. (2015) Environmental indicators for sustainable production of algal biofuels, Ecol. Indic. 49, 1–13. [Google Scholar]
  • Datta A., Mandal B.K. (2014) Use of Jatropha biodiesel as a future sustainable fuel, Energy Technol. Policy 1, 1, 8–14. [CrossRef] [Google Scholar]
  • van Eijck J., Romijn H., Smeets E., Bailis R., Rooijakkers M., Hooijkaas N., Verweij P., Faaij A. (2014) Comparative analysis of key socio-economic and environmental impacts of smallholder and plantation based jatropha biofuel production systems in Tanzania, Biomass Bioenergy 61, 25–45. [Google Scholar]
  • Alam F., Mobin S., Chowdhury H. (2015) Third generation biofuel from Algae, Procedia Eng. 105, 763–768. [Google Scholar]
  • Ho D.P., Ngo H.H., Guo W. (2014) A mini review on renewable sources for biofuel, Bioresour. Technol. 169, 742–749. [Google Scholar]
  • Kumar S., Shrestha P., Salam P.A. (2013) A review of biofuel policies in the major biofuel producing countries of ASEAN: Production, targets, policy drivers and impacts, Renew. Sustain. Energy Rev. 26, 822–836. [CrossRef] [Google Scholar]
  • Salvi B.L., Panwar N.L. (2012) Biodiesel resources and production technologies – A review, Renew. Sustain. Energy Rev. 16, 6, 3680–3689. [CrossRef] [Google Scholar]
  • Milazzo M.F., Spina F., Cavallaro S., Bart J.C.J. (2013) Sustainable soy biodiesel, Renew. Sustain. Energy Rev. 27, 806–852. [CrossRef] [Google Scholar]
  • Silalertruksa T., Gheewala S.H. (2012) Environmental sustainability assessment of palm biodiesel production in Thailand, Energy 43, 1, 306–314. [CrossRef] [Google Scholar]
  • Obidzinski K., Andriani R., Komarudin H., Andrianto A. (2012) Environmental and social impacts of oil palm plantations and their implications for biofuel production in Indonesia, Ecol. Soc. 17, 1, 25. [Google Scholar]
  • Hassan M.H., Kalam M.A. (2013) An overview of biofuel as a renewable energy source: Development and challenges, Procedia Eng. 56, 39, 53. [Google Scholar]
  • Borowitzka M.A., Moheimani N.R. (2013) Sustainable biofuels from algae, Mitig. Adapt. Strat. Glob. Chang. 18, 1, 13–25. [CrossRef] [Google Scholar]
  • Efroymson R.A., Dale V.H., Kline K.L., McBride A.C., Bielicki J.M., Smith R.L., Parish E.S., Schweizer P.E., Shaw D.M. (2013) Environmental indicators of biofuel sustainability: What about context? Env. Manage. 51, 2, 291–306. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.