Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
Article Number 7
Number of page(s) 16
Published online 25 January 2021
  • Albertoni A., Lake L. (2003) Inferring interwell connectivity only from well-rate fluctuations in waterfloods, SPE Reserv. Eval. Eng 6, 1, 6–16. [CrossRef] [Google Scholar]
  • Alim M. (2013) Constraint handling in life-cycle optimization using ensemble gradients, MSc Thesis Report, Delft University of Technology, The Netherlands. [Google Scholar]
  • Biegler L.T. (2010) Nonlinear programming: concepts, algorithms, and applications to chemical processes, SIAM – Society for Industrial and Applied Mathematics, Philadelphia. [CrossRef] [Google Scholar]
  • Cao F. (2014) Development of a two-phase flow coupled capacitance resistance model, PhD Dissertation, The University of Texas at Austin, USA. [Google Scholar]
  • Cao F., Luo H., Lake L.W. (2015) Oil-rate forecast by inferring fractional-flow models from field data with Koval method combined with the capacitance/resistance model, SPE Reserv. Eval. Eng. 18, 4, 534–553. [CrossRef] [Google Scholar]
  • Chen Y., Oliver D.S., Zhang D. (2009) Efficient ensemble-based closed-loop production optimization, SPE J 14, 4, 634–645. [CrossRef] [Google Scholar]
  • Chen Y., Oliver D.S. (2012) Localization of ensemble-based control-setting updates for production optimization, Society of Petroleum Engineers, [Google Scholar]
  • Chen B., Reynolds A.C. (2016) Ensemble-based optimization of the water alternating-gas-injection process, SPE J. 21, 3, 786–798. [CrossRef] [Google Scholar]
  • CMG (2018) IMEX: User’s Guide, Computer Modeling Group LTD, Calgary-Canada. [Google Scholar]
  • Datta-Gupta A., King M.J. (2007) Streamline Simulation: Theory and Practice, Textbook Series #11, Society of Petroleum Engineers, Richardson, TX, ISBN 978-1-55563-111-6. [Google Scholar]
  • Dehdari V., Oliver D.S. (2012) Sequential quadratic programming for solving constrained production optimization – case study from Brugge field, SPE J. 17, 874–884. [CrossRef] [Google Scholar]
  • Dehdari V., Oliver D.S., Deutsch C. (2012) V.: Comparison of optimization algorithms for reservoir management with constraints – A case study, J. Pet. Sci. Eng. 100, 41–49. [CrossRef] [Google Scholar]
  • Do S.T., Reynolds A.C. (2013) Theoretical connections between optimization algorithms based on an approximate gradient, Comput. Geosci. 17, 959. [CrossRef] [Google Scholar]
  • Du W.B., Zhang J.G., Hao S.Z. (2002) The application of pulse well tests for the well group of Forerunner Test of tertiary oil recovery in Yumen oilfield, Well Testing 11, 4, 32–33. [Google Scholar]
  • Gentil P.H. (2005) The use of multilinear regression models in patterned waterfloods: Physical meaning of the regression coefficient, Master’s thesis, The University of Texas at Austin, USA. [Google Scholar]
  • Holanda R.W., Gildin E., Jensen J.L. (2015) Improved waterflood analysis using the capacitance-resistance model within a control systems framework, Society of Petroleum Engineers. [Google Scholar]
  • Hong A.J., Bratvold R.B., Nævdal G. (2017) Robust production optimization with capacitance-resistance model as precursor, Comput. Geosci. 21, 1423–1442. [CrossRef] [Google Scholar]
  • Jafroodi N., Zhang D. (2011) New method for reservoir characterization and optimization using CRM–EnOpt approach, J. Pet. Sci. Eng. 77, 2, 155–171. [CrossRef] [Google Scholar]
  • Kaviani D., Valkó PP (2010) Inferring interwell connectivity using multiwell productivity index (MPI), J Pet Sci Eng. 73, 1, 48–58. [CrossRef] [Google Scholar]
  • Koval E.J. (1963) A method for predicting the performance of unstable miscible displacement in heterogeneous media, SPE J 3, 2. [Google Scholar]
  • Liang X., Weber D., Edgar T.F., Lake L.W., Sayarpour M., Al-Yousef A. (2007) Optimization of Oil Production Based on A Capacitance Model of Production and Injection Rates, Society of Petroleum Engineers, Richardson, TX, USA. [Google Scholar]
  • Lins H.K.F., Horowitz B., Tueros J.A.R. (2017) Numerical experience using capacitance resistance multilayered models, CILAMCE 2017, in: Ibero-Latin American Congress in Computational Methods in Engineering. Florianopolis, Brazil. (in Portuguese). [Google Scholar]
  • Liu Z., Forouzanfar F., Zhao Y. (2018) Comparison of SQP and AL algorithms for deterministic constrained production optimization of hydrocarbon reservoirs, J. Pet. Sci. Eng. 171, 542–557. [CrossRef] [Google Scholar]
  • Liu W., Liu W.D., Gu J. (2020) A Machine Learning Method to infer inter-well connectivity using bottom-hole pressure data, J. Energy Resour. Technol. 142, 103007. [CrossRef] [Google Scholar]
  • Maizeret P.D. (2013) Best practice to design and interpret interference tests based on features of the line-sources solution: Theory and Applications, Society of Petroleum Engineers. [Google Scholar]
  • MATLAB’s Optimization Toolbox User’s Guide, R2014. [Google Scholar]
  • Mirzayev M., Jensen J.L. (2019) Interwell connectivity analysis in a low-permeability formation using a modified Capacitance Model with application to the East Pembina Field, Cardium Formation, Alberta, Oil Gas Sci. Technol. - Rev. IFP Energies Nouvelles 74, 26. [CrossRef] [Google Scholar]
  • Moreno G.A. (2013) Multilayer capacitance–resistance model with dynamic connectivities, J. Pet. Sci. Eng. 109, 298–307. [CrossRef] [Google Scholar]
  • Moyner O., Krogstad S., Lie K.A. (2014) The Application of Flow Diagnostics for Reservoir Management, Internal Report SINTEF 1, 1–30. [Google Scholar]
  • Noetinger B. (2016) About the determination of quasi steady state storativity and connectivity matrix of wells in 3D heterogeneous formations, Math. Geosci. 48, 6, 641–662. [Google Scholar]
  • Oliveira D.F.B. (2006) Production optimization techniques for petroleum reservoirs: Derivate free approaches to dynamic rate allocation for injection and production, Master Thesis, Civil Engineering Department, UFPE, Recife, Brazil (in Portuguese). [Google Scholar]
  • Oliveira D.S., Horowitz B., Tueros J.A.R. (2020) Kogen-Combined Koval/Gentil Fractional Flow Model, in: Proceeding of the 17th European Conference on the Mathematical Oil Recovery, 14–17 September, 2020. [Google Scholar]
  • Panda M., Chopra A. (1998) An integrated approach to estimate well interactions, in: SPE India oil and gas conference and exhibition, Society of Petroleum Engineers. [Google Scholar]
  • Peters E., Arts R.J., Brouwer G.K., Geel C.R. (2009) Results of the Brugge benchmark study for flooding optimisation and history matching, Paper SPE 119094 presented at the SPE Reservoir Simulation Symposium, The Woodlands, Texas, USA, 2–4 February. [Google Scholar]
  • Pinto J.W.O., Tueros J.A.R., Horowitz B., Afonso da Silva S.M.B., Willmersdorf R.B., Oliveira D.F.B. (2020) Gradient-free strategies to robust well control optimization, Comput. Geosci. 24, 1959–1978. [CrossRef] [Google Scholar]
  • Sayarpour M., Zuluaga E., Kabir C.S., Lake L.W. (2007) The use of capacitance–resistive models for rapid estimation of waterflood performance, SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, [Google Scholar]
  • Sayarpour M. (2008) Development and application of capacitance-resistive models to water/CO2 floods, Ph.D. Dissertation, The University of Texas at Austin, Austin, Texas. [Google Scholar]
  • Sayarpour M., Zuluaga E., Kabir C.S., Lake L.W. (2009) The use of capacitance-resistive models for rapid estimation of waterflood performance and optimization, J. Petrol. Sci. Eng. 69, 3–4, 227–238. [CrossRef] [Google Scholar]
  • Shahamat M.S., Hamdi H., Mattar L., Aguilera R. (2016) A novel method for performance analysis of compartmentalized reservoirs, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 71, 38. [CrossRef] [Google Scholar]
  • Su H.-J., Oliver D.S. (2010) Smart Well Production Optimization Using An Ensemble-Based Method, SPE Res. Eval. Eng. 13, 6, 884–892. [CrossRef] [Google Scholar]
  • Tueros J.A.R., Horowitz B., Willmersdorf R. (2015) Numerical experience with an ensemble-based method for constrained waterfloonding optimization, in: Cilamce 2015, Ibero-Latin American Congress in Computational Methods in Engineering, Rio Janeiro, Brazil. [Google Scholar]
  • Tueros J.A.R., Horowitz B., Willmersdorf R.B., Oliveira D.F.B. (2018) Non-distance-based localization techniques for ensemble-based waterflooding optimization, J. Pet. Sci. Eng. 170, 440–452. [CrossRef] [Google Scholar]
  • Tueros J.A.R., Horowitz B., Willmersdorf R.B., Oliveira D.F.B. (2020) Refined ensemble-based waterflooding optimization subject to field-wide constraints, Comput. Geosci. 24, 871–887. [CrossRef] [Google Scholar]
  • Wang Y., Kabir C.S., Reza Z. (2020) Deciphering well connectivity with diagnostic signal processing techniques, J. Pet. Sci. Eng. 185, 106610. [CrossRef] [Google Scholar]
  • Weber D. (2009) The use of capacitance-resistance models to optimize injection allocation and well location in water floods, Ph.D Dissertation, The University of Texas at Austin, Austin, Texas. [Google Scholar]
  • Weber D., Edgar T.F., Lake L.W., Lasdon L.S., Kawas S., Sayarpour M. (2009) Improvements in capacitance–resistive modeling and optimization of large-scale reservoirs, in: SPE Western Regional Meeting, Society of Petroleum Engineers. [Google Scholar]
  • Yousef A.A., Gentil P.H., Jensen J.L., Lake L.W. (2005) A capacitance model to infer interwell connectivity from production and injection rate fluctuations, in: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers. [Google Scholar]
  • Zhang Y., Jiang R.Z., Zheng X.Q. (2001) Analysis technology of inter-well tracer, J. China Univ. Pet. (Ed. Nat. Sci.) 25, 2, 76–78. [Google Scholar]
  • Zhang Y.T., Stordal A.S., Lorentzen R.J., Chang Y. (2018) A Novel Ensemble-Based Conjugate Gradient Method for Reservoir Management, Society of Petroleum Engineers. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.