Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
Article Number 5
Number of page(s) 19
Published online 23 December 2020
  • Stanislaus A., Marafi A., Rana M.S. (2010) Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production, Catal. Today 153, 1–68. [CrossRef] [Google Scholar]
  • Diaz de Leon J.N., Kumar C.R., Antunez-Garcia J., Fuentes-Moyado S. (2019) Recent insights in transition metal sulfide hydrodesulfurization catalysts for the production of ultra low sulfur diesel: A short review, Catalysts 9, 87, 1–26. [CrossRef] [Google Scholar]
  • Fujikawa T. (2006) Highly active CoMo HDS catalyst for the production of clean diesel fuels, Catal. Surv. Asia 10, 89–97. [CrossRef] [Google Scholar]
  • Asian Clean Fuel Association, CAI-Asia (2011) A Road Map for cleaner Fuels and vehicles in Asia, Factsheet 17, September 2011. [Google Scholar]
  • Peckham J. (2006) Road Map for Asia’ Pushes Cleaner Fuels; “Gradual” desulfurization seen inefficient, Diesel Fuel News Jun 5, 10–12. [Google Scholar]
  • Delmon B. (1993) New technical challenges and recent advances in hydrotreatment catalysis. A crucial updating review, Catal. Lett. 22, 1–32. [CrossRef] [Google Scholar]
  • Wan G., Duan A., Zhang Y., Zhao Z., Jiang G., Zhang D., Li J., Chung K. (2010) NiW/AMBT catalysts for the production of ultra-low sulfur diesel, Catal. Today 23, 521–529. [CrossRef] [Google Scholar]
  • Ramirez J., Gutierrez-Alejandre A. (1998) Relationship between hydrodesulfurization activity and morphological and structural changes in NiW hydrotreating catalysts supported on Al2O3-TiO2 mixed oxides, Catal. Today 43, 123–133. [CrossRef] [Google Scholar]
  • Luck F. (1991) A review of support effects on the activity and selectivity of hydrotreating catalysts, Bull. Soc. Chim. Belg. 100/n°, 11–12, 781–800. [Google Scholar]
  • Tanaka H., Boulinguiez M., Vrinat M. (1996) Hydrodesulfurization of thiophene, dibenzothiophene and gas oil on various Co-Mo /TiO2-Al2O3 catalysts, Catal. Today 29, 209–213. [CrossRef] [Google Scholar]
  • Vasquez-Garrido I., Lopez-Benitez A., Berhault G., Guevara-Lara A. (2019) Effect of support on the acidity of NiMo/Al2O3-MgO and NiMo/TiO2-Al2O3 catalysts and on the resulting competitive hydrodesulfurization/hydrodenitrogenation reactions, Fuel 236, 55–64. [CrossRef] [Google Scholar]
  • Olguin E., Vrinat M., Cedeno L., Ramirez J., Borque M., Lopez-Agudo A. (1997) The use of TiO2-Al2O3 binary oxides as supports for Mo-based catalysts in hydrodesulfurization of thiophene and dibenzothiophene, Appl. Catal. A 165, 1–13. [CrossRef] [Google Scholar]
  • Castillo-Villalon P., Ramirez J., Cuevas R., Vasquez P., Castanedas R. (2015) Influence of the support on the catalytic performance of Mo, CoMo, and NiMo catalysts supported on Al2O3 and TiO2 during the HDS of thiophene, dibenzothiophene, or 4,6-dimethyldibenzothiophene, Catal. Today 259, 40–149. [Google Scholar]
  • Wan G., Duan A., Zhao Z., Jiang G., Zhang D., Li R., Dou T., Chung K. (2009) Al2O3-TiO2/Al2O3-TiO2-SiO2 composite supported bimetallic Pt-Pd catalysts for the hydrodearomatization and hydrodesulfurization of diesel fuel, Energy Fuels 23, 81–85. [Google Scholar]
  • Prada Silvy R., Galiasso R., Romero Y., Reyes E., Muñoz R. (1993) US Patent 5,229,347. [Google Scholar]
  • Grange P., Vanhaeren X. (1997) Hydrotreating catalysts, an old story with new challenges, Catal. Today 36, 375–391. [Google Scholar]
  • Prada Silvy R. (2019) Scale-up of a NiMoP/γAl2O3 catalyst for the hydrotreating and mild hydrocracking of heavy gasoil, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 74, 22. [CrossRef] [Google Scholar]
  • Yoshinaka S., Segawa K. (1998) Hydrodesulfurization of dibenzothiophenes over molybdenum catalyst supported on TiO2-Al2O3, Catal. Today 45, 293–298. [Google Scholar]
  • Zotin J.L., Cattenot M., Portefaix J.L., Breysse M. (1995) Conversion of nitrogen containing molecules in the presence of a mixture of nickel molybdenum supported on alumina and ruthenium sulfide dispersed in a KY zeolite, Bull. Soc. Chim. Belg. 104, 4–5, 213–218. [CrossRef] [Google Scholar]
  • Hensen E.J.M., Van der Meer Y., Van Veen J.A.R., Niemantsverdriet J.W. (2007) Insight into the formation of the active phases in supported NiW hydrotreating catalysts, Appl. Catal., A 322, 16–32. [CrossRef] [Google Scholar]
  • Obeso-Estrella R., Fierro J.L.G., Diaz de Leon J.N., Fuentes S., Alonso-Nunez G., Lugo-Medina E., Pawelec B., Zepeda T.A. (2018) Effect of partial Mo substitution by W on HDS activity using sulfide CoMoW/Al2O3 - TiO2 catalysts, Fuel 233, 644–657. [CrossRef] [Google Scholar]
  • Breysse M., Djega-Mariadassous G., Pessayre S., Geantet C., Vrinat M., Perot G., Lemaire M. (2003) Deep desulfurization: reactions, catalysts and technological challenges, Catal. Today 84, 129–138. [Google Scholar]
  • Ledoux M.J., Michaux O., Agostini G., Panissod P. (1986) The influence of sulfide structures on the hydrodesulfurization activity of carbon-supported catalysts, J. Catal. 102, 275. [Google Scholar]
  • Chianelli R.R., Daage M., Ledoux M.J. (1994) Fundamental studies of transition-metal sulfide catalytic materials, Adv. Catal. 40, 177–232. [Google Scholar]
  • Vrinat M., Lacroix M., Breysse M., Mosoni L., Roubin M. (1989) Catalytic properties in hydrogenation and hydrodesulphurization reactions of ruthenium sulphide solid solutions containing iron, cobalt or nickel, Catal. Lett. 3, 405–412. [CrossRef] [Google Scholar]
  • Prada Silvy R. (2019) Parameters controlling the scale-up of CoMoP/γ- Al2O3 and NiMoP/γAl2O3 catalysts for the hydrotreating and mild-hydrocracking of heavy gasoil, Catal. Today 338, 93–99. [Google Scholar]
  • Maduna Valkaj K., Kaselj I., Smolkovic J., Zrncevic S., Kumar N., Murzin D. (2015) Catalytic wet peroxide oxidation of olive oil mill wastewater over zeolite based catalyst, Chem. Eng. Trans. 43, 853–858. [Google Scholar]
  • Zhaobin W., Qin X., Xiexian G., Sham E.L., Grange P., Delmon B. (1990) Titania-modified hydrodesulphurization catalysts I. Effect of preparation techniques on morphology and properties of TiO2-Al2O3 carrier, Appl. Catal 63, 305–317. [Google Scholar]
  • Ramirez J., Ruiz-Ramirez L., Cedeno L., Harle V., Vrinat M., Breysse M. (1993) Titania-alumina mixed oxides as supports for molybdenum hydrotreating catalysts, Appl. Catal., A 93, 163–180. [CrossRef] [Google Scholar]
  • Cruz-Perez A.E., Guevara-Lara A., Morales-Ceron J.P., Alvarez-Hernadez A., de los Reyes J.A., Massin L., Geantet C., Vrinat M. (2011) Ni and W interactions in the oxide and sulfide states on an Al2O3-TiO2 support and their effects on dibenzothiophene hydrodesulfurization, Catal. Today 172, 203–208. [Google Scholar]
  • Bonsack J.P. (1973) Ion-exchange and surface properties of titania gels from Ti (IV) sulfate solutions, J. Coll. Interf. Sci. 44, 430. [CrossRef] [Google Scholar]
  • Guevara-Lara A., Bacaud R., Vrinat M. (2007) Highly active NiMo/TiO2-Al2O3 catalysts: Influence of the preparation and the activation conditions on the catalytic activity, Appl. Catal., A 328, 99–108. [CrossRef] [Google Scholar]
  • Freudenberg B., Mocellin A. (1988) Aluminum titanate formation by solid-state reaction of coarse Al2O3 and TiO2 powders, J. Am. Ceram. Soc. 71, 22–28. [Google Scholar]
  • Freudenberg B., Mocellin A. (1990) Aluminium titanate formation by solid state reaction of Al2O3 and TiO2 single crystals, J. Mater. Sci. 25, 3701–3708. [Google Scholar]
  • Zhou Y., Yin J., Xu H., Xia Y., Liu Z., Li A., Gong Y., Pu L., Yan F., Shi Y. (2010) A TiAl2O5 nanocrystal charge trap memory device, Appl. Phys. Lett. 97, 143504. [Google Scholar]
  • Lee M.-H., Feng C.-F., Heine V., Klinowski J. (1997) Distribution of tetrahedral and octahedral A1 sites in gamma alumina, Chem. Phys. Lett. 265, 6, 673–676. [Google Scholar]
  • Shee D., Deo G., Hirt A.M. (2010) Characterization and reactivity of sol-gel synthetized TiO2- Al2O3 supported vanadium oxide catalysts, J. Catal. 273, 221–228. [Google Scholar]
  • Li Z., Meng M., You R., Ding T., Li Z. (2012) Superior performance of mesoporous TiO2-Al2O3 supported NSR catalysts with the support synthesized using nonionic and cationic surfactants as Co-templates, Catal. Lett. 142, 1067–1074. [CrossRef] [Google Scholar]
  • Ramos-Galvan C.E., Sandoval-Roble G., Castillo-Mares A., Dominguez J.M. (1997) Comparison of catalytic properties of NiMo/Al2O3 with NiMo supported on Al, Ti-pillared clays in HDS of residual oils, Appl. Catal. A 150, 37–52. [CrossRef] [Google Scholar]
  • Gil Llambias F.J., Bouyssieres L., Lopez-Agudo A. (1990) Preparation and characterization by electrophoretic migration of TiO2-Al2O3 catalytic supports, Appl. Catal. 65, 45. [Google Scholar]
  • Akratopulu K., Kordulis C., Lycourghiotis A. (1990) Effect of temperature on the point of zero charge and surface charge of TiO2, J. Chem. Soc. Faraday Trans. 86, 3437–3440. [CrossRef] [Google Scholar]
  • Kohler S.D., Ekerdt J.D., Kim D.S., Wachs I.E. (1992) Relationship between structure and point of zero surface charge for molybdenum and tungsten oxides supported on alumina, Catal. Lett. 16, 231. [CrossRef] [Google Scholar]
  • Spanos N., Matralis H.K., Kordulis Ch, Lycourghiotis A. (1992) Molybdenum-oxo species deposited on titania by adsorption: Mechanism of the adsorption and characterization of the calcined samples, J. Catal. 136, 432. [Google Scholar]
  • Prada Silvy R. (1987) Parameters controlling the activation of CoMo/Al2O3 hydrodesulfurization catalysts. PhD Thesis, Univ Catholique de Louvain, Belgium. [Google Scholar]
  • Prada Silvy R., Grange P., Delannay F., Delmon B. (1989) Influence of the nature of the activating molecules on the catalytic activity of cobalt-molybdenum/alumina catalysts, Appl. Catal. 46, 113–129. [Google Scholar]
  • Prada Silvy R., Delannay F., Delmon B. (1987) Influence of the activation temperature on the degree of sulfidation, dispersion and catalytic activity of Co-Mo/γAl2O3 catalysts, Indian J. Technol. 25, 627. [Google Scholar]
  • Prada Silvy R., Beuken J.M., Garcia Fierro J.L., Bertrand P., Delmon B. (1986) Surface investigation, by XPS, ISS and IR spectroscopy of adsorbed NO of the structural changes occurring during the reduction of Co-Mo/γAl2O3 catalysts, Surf. Interface Anal. 8, 167. [Google Scholar]
  • Prada Silvy R., Grange P., Delmon B. (1987) IV International Symposium on Preparation of Heterogeneous Catalysts, Louvain-la-Neuve, Belgium, p. 605. [Google Scholar]
  • Ladriere J., Prada Silvy R. (1988) Mössbauer emission studies of Co-Mo/γAl2O3 hydrodesulfurization catalysts: Effects of reduction and sulfidation treatments, IX International Conference on Mössbauer Application Hyperfine Interactions 41, 653–656. [CrossRef] [Google Scholar]
  • Scheffer B., Mangnus P.J., Moulijn J.A. (1990) A temperature-programmed sulfiding study of NiO/Al2O3 catalysts, J. Catal. 121, 18. [Google Scholar]
  • Van der Vlies A.J., Kishan G., Niemantsverdriet J.W., Prins R., Weber Th (2002) Basic reaction steps in the sulfidation of crystalline tungsten oxides, J. Phys. Chem. B 106, 13, 3449. [Google Scholar]
  • Van der Vlies A.J., Prins R., Weber Th (2002) Chemical principles of the sulfidation of tungsten oxides, J. Phys. Chem. B. 106, 36, 9277. [Google Scholar]
  • Harris S., Chianelli R.R. (1983) Periodic effects in catalysis: The relation between trends in catalytic activity and calculated electronic structure of transition-metal sulfides, Chem. Phys. Lett. 101, 603. [Google Scholar]
  • Harris S., Chianelli R.R. (1984) Catalysis by transition metal sulfides: the relation between calculated electronic trends and HDS activity, J. Catal. 86, 400–412. [Google Scholar]
  • Eijsbouts S., Dudhakar C., de Beer V.H.J., Prins R. (1988) Periodic trends in the hydrodenitrogenation activity of carbon-supported transition metal sulfide catalysts, J. Catal. 109, 217. [Google Scholar]
  • Ledoux M.J., Djellouli B. (1989) Hydrodenitrogenation activity and selectivity of well-dispersed transition metal sulfides of the second row on activated carbon, J. Catal. 115, 580–590. [Google Scholar]
  • Zdrazil M. (1988) Recent advances in catalysis over sulphides, Catal. Today 3, 269–365. [Google Scholar]
  • Candia R., Clausen B.J., Topsøe H. (1981) On the role of promoter atoms in unsupported hydrodesulfurization catalysts: Influence of preparation methods, Bull. Soc. Chim. Belg. 90, 12, 1225. [CrossRef] [Google Scholar]
  • Topsøe H. (1983) Surface science and catalysis by non-metals, Elsevier Science Publishers B.V., Amsterdam, The Netherlands, p. 329. [Google Scholar]
  • Topsøe H., Clausen B.S., Candia R., Wivel C., Morup S. (1981) In situ Mössbauer emission spectroscopy studies of unsupported and supported sulfided Co-Mo hydrodesulfurization catalysts: Evidence for and nature of a Co-Mo-S phase, J. Catal. 68, 433. [Google Scholar]
  • Delmon B. (1979) A new mechanistic model explaining synergy in hydro-treatment catalysts. C.R. Acad. Sci. series C 289, 173. [Google Scholar]
  • Delmon B. (1979) A new hypothesis explaining synergy between two phases in heterogeneous catalysis the case of hydrodesulfurization catalysts. Bull. Soc. Chim. Belg. 88, 979. [CrossRef] [Google Scholar]
  • Delmon B. (1980) A new concept explaining catalytic synergy between two solid phases, React. Kinet. Catal. Lett 13, 203. [CrossRef] [Google Scholar]
  • Wivel C., Candia R., Clausen B.S., Morup S., Topsøe H. (1981) On the catalytic significance of a CoMoS phase in CoMo/Al2O3 hydrodesulfurization catalysts: Combined in situ Mössbauer emission spectroscopy and activity studies, J. Catal. 68, 453. [Google Scholar]
  • Van der Meer Y., Vissenberg M.J., De Beer V.H.J., Van Veen J.A.R., Van Der Kraan A.M. (2002) Characterization of carbon and alumina-supported NiW and CoW sulfided catalysts, Hyp. Interact. 139, 51. [CrossRef] [Google Scholar]
  • Breysse M., Bachelier J., Bonnelle J.P., Cattenot M., Cornet D., Decamp T., Duchet J.C., Engelhard P., Frety R., Gachet C., Geneste P., Grimblot J., Gueguen C., Kasztelan S., Lacroix M., Lavalley J.C., Leclercq C., Moreau C., De Mourgues L., Olive J.L., Payen E., Portefaix J.L., Toulhoat H., Vrinat M. (1987) New developments in hydrotreating catalysis: characterization and optimization of NiW/A12O3 catalysts, Bull. Soc. Chim. Belg. 96, 829. [CrossRef] [Google Scholar]
  • Clausen B.S., Morup S., Topsøe H., Candia R. (1976) J. Phys. Colloq. 37, C6–249. [Google Scholar]
  • Karroua M., Grange P., Delmon B. (1989) Existence of synergy between “CoMoS” and Co9S8, new proof of remote control in hydrodesulfurization, Appl. Catal. 50, 5–10. [Google Scholar]
  • Passaretti J.D., Chianelli R.R., Wold A., Dwight K., Covino J. (1986) Preparation and properties of the systems Co1−xRhxS2, Co1−xRuxS2, and Rh1−xRuxS2, J. Solid State Chem. 64, 365. [Google Scholar]
  • McCarty K.F., Anderegg J.W., Schrader G.L. (1985) Hydrodesulfurization catalysis by Chevrel phase compounds, J. Catal. 93, 375. [Google Scholar]
  • Rao CNR (1993), in: Proceedings 3rd International Conference on Advanced Materials, Tokio. [Google Scholar]
  • Hirschon A.S., Wilson R.B., Laine R.M. (1987) Ruthenium promoted hydrodenitrogenation catalysts, Appl. Catal. 34, 311. [Google Scholar]
  • Prada Silvy R. Hydrogenation of aromatic compounds in Diesel fuel over NiWPd/TiO2-Al2O3 catalysts, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles, . Article in preparation. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.