Advanced modeling and simulation of flow in subsurface reservoirs with fractures and wells for a sustainable industry
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Advanced modeling and simulation of flow in subsurface reservoirs with fractures and wells for a sustainable industry
Article Number 41
Number of page(s) 13
DOI https://doi.org/10.2516/ogst/2020037
Published online 18 June 2020
  • Kim J., Tchelepi H.A., Juanes R. (2011) Stability and convergence of sequential methods for coupled flow and geomechanics: Fixed-stress and fixed-strain splits, Comput. Meth. Appl. Mech. Eng. 200, 13, 1591–1606. [CrossRef] [Google Scholar]
  • Huang Z.Q., Winterfeld P.H., Xiong Y., Wu Y.S., Yao J. (2015) Parallel simulation of fully-coupled thermal-hydro-mechanical processes in CO2 leakage through fluid-driven fracture zones, Int. J. Greenhouse Gas Control 34, 39–51. [CrossRef] [Google Scholar]
  • Li S., Li X., Zhang D. (2016) A fully coupled thermo-hydro-mechanical, three-dimensional model for hydraulic stimulation treatments, J. Nat. Gas Sci. Eng. 34, 64–84. [Google Scholar]
  • Jin L., Zoback M.D. (2017) Fully coupled nonlinear fluid flow and poroelasticity in arbitrarily fractured porous media: A hybrid-dimensional computational model, J. Geophys. Res.: Solid Earth 122, 10, 7626–7658. [CrossRef] [Google Scholar]
  • Terzaghi K. (1943) Theoretical soil mechanics, John Wiley and Sons, New York, NY. [Google Scholar]
  • Biot M.A. (1941) General theory of three-dimensional consolidation, J. Appl. Phys. 12, 2, 155. [Google Scholar]
  • Cheng H.D., Abousleiman Y., Detournay E., Cui L., Roegiers J.C. (1996) Mandel’s problem revisited, Géotechnique 46, 2, 187–195. [CrossRef] [Google Scholar]
  • Murad M.A., Loula A.F.D. (1994) On stability and convergence of finite element approximations of biot’s consolidation problem, Int. J. Numer. Meth. Eng. 37, 4, 645–667. [CrossRef] [MathSciNet] [Google Scholar]
  • Jha B., Juanes R. (2007) A locally conservative finite element framework for the simulation of coupled flow and reservoir geomechanics, Acta Geotech. 2, 3, 139–153. [CrossRef] [Google Scholar]
  • Deng Y., Sun D., Liang Y., Yu B., Wang P. (2017) Implementation of the ideal algorithm for complex steady-state incompressible fluid flow problems in openfoam, Int. Commun. Heat Mass Trans. 88, 63–73. [CrossRef] [Google Scholar]
  • Li T.Y., Gao Y.Q., Han D.X., Yang F.S., Yu B. (2020) A novel POD reduced-order model based on EDFM for steady-state and transient heat transfer in fractured geothermal reservoir, Int. J. Heat Mass Trans. 146, 2020, 118783. [CrossRef] [Google Scholar]
  • Vasilyeva M., Chung E.T., Efendiev Y., Kim J. (2018) Constrained energy minimization based upscaling for coupled flow and mechanics, J. Comput. Phys. 376, 660–674. doi: 10.1016/j.jcp.2018.09.054. [Google Scholar]
  • Asadi R., Ataie-Ashtiani B., Simmons C.T. (2014) Finite volume coupling strategies for the solution of a Biot consolidation model, Comput. Geotech. 55, 494–505. [Google Scholar]
  • Nordbotten M.J. (2014) Finite volume hydromechanical simulation in porous media, Water Res. Res. 50, 5, 4379–4394. [CrossRef] [Google Scholar]
  • Tang T., Hededal O., Cardiff P. (2015) On finite volume method implementation of poro-elasto-plasticity soil model, Int. J. Numer. Anal. Meth. Geomech. 39, 13, 1410–1430. [CrossRef] [Google Scholar]
  • Nilsen H.M., Nordbotten J., Raynaud X. (2018) Comparison between cell-centered and nodal-based discretization schemes for linear elasticity, Comput. Geosci. 22, 1, 233–260. [Google Scholar]
  • Suliman R., Oxtoby O.F., Malan A.G., Kok S. (2014) An enhanced finite volume method to model 2D linear elastic structures, Appl. Math. Model. 38, 7–8, 2265–2279. [Google Scholar]
  • Belytschko T., Black T. (1999) Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. Meth. Eng. 45, 5, 601–620. [CrossRef] [Google Scholar]
  • Bordas S., Nguyen P.V., Dunant C., Guidoum A., Nguyen-Dang H. (2007) An extended finite element library, Int. J. Numer. Meth. Eng. 71, 6, 703–732. [CrossRef] [Google Scholar]
  • Yan X., Huang Z., Yao J., Li Y., Fan D., Zhang K. (2018) An efficient hydro-mechanical model for coupled multi-porosity and discrete fracture porous media, Comput. Mech. 62, 943–962. [Google Scholar]
  • Shi F., Wang X., Liu C., Liu H., Wu H. (2017) An xfem-based method with reduction technique for modeling hydraulic fracture propagation in formations containing frictional natural fractures, Eng. Fract. Mech. 173, 64–90. [Google Scholar]
  • Ucar E., Keilegavelen E., Berre I., Nordbotten J.M. (2018) A finite-volume discretization for deformation of fractured media, Comput. Geosci. 22, 4, 993–1007. [Google Scholar]
  • Deb R., Jenny P. (2014) Modeling of failure along predefined planes in fractured reservoirs, in: Proceedings, Thirty-Ninth Workshop Geothermal Reservoir Engineering, Stanford University, Stanford, CA. [Google Scholar]
  • Deb R., Jenny P. (2017) Finite volume-based modeling of flow-induced shear failure along fracture manifolds, Int. J. Numer. Anal. Meth. Geomech. 41, 3, 1922–1942. [CrossRef] [Google Scholar]
  • Deb R., Jenny P. (2017) Modeling of shear failure in fractured reservoirs with a porous matrix, Comput. Geosci. 21, 5–6, 1119–1134. [Google Scholar]
  • Deb R. (2018) Numerical modeling of fluid injection induced shear failure, tensile opening and flow-mechanics coupling, PhD Thesis, ETH, Zurich. [Google Scholar]
  • Karvounis D.C., Jenny P. (2016) Adaptive hierarchical fracture model for enhanced geothermal systems, Multiscale Model. Simul. 14, 1, 207–231. [Google Scholar]
  • Lee S.H., Lough M.F., Jensen C.L. (2001) Hierarchical modeling of flow in naturally fractured formations with multiple length scales, Water Resour. Res. 37, 3, 443–455. [Google Scholar]
  • Moinfar A., Sepehrnoori K., Johns R.T., Varavei A. (2013) Coupled geomechanics and flow simulation for an embedded discrete fracture model, Society of Petroleum Engineers. [Google Scholar]
  • Gunnar J., Miller S.A. (2017) On the role of thermal stresses during hydraulic stimulation of geothermal reservoirs, Geofluids 2017, 1–15. [Google Scholar]
  • Gunnar J., Valley B., Miller S.A. (2018) THERMAID-A matlab package for thermo-hydraulic modeling and fracture stability analysis in fractured reservoirs, arXiv:1806.10942 [physics.comp-ph] [Google Scholar]
  • Shah S., Møyner O., Tene M., Lie K.-A., Hajibeygi H. (2016) The multiscale restriction smoothed basis method for fractured porous media (F-MsRSB), J. Comput. Phys. 318, 36–57. [Google Scholar]
  • Peaceman D.W. (1983) Interpretation of well-block pressures in numerical reservoir simulation with nonsquare gridblocks and anisotropic permeability, Soc. Pet. Eng. J. 8, 3, 183–194. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.