- Azevedo C.R.F. (2007) Failure analysis of a crude oil pipeline, Eng. Fail. Anal. 14, 6, 978–994. [Google Scholar]
- Gloria N.B.S., Areiza M.C.L., Miranda I.V.J., Rebello J.M.A. (2009) Development of a magnetic sensor for detection and sizing of internal pipeline corrosion defects, NDT E Int. 42, 8, 669–677. [Google Scholar]
- Vanaei H.R., Eslami A., Egbewande A. (2017) A review on pipeline corrosion, in-line inspection (ILI), and corrosion growth rate models, Int. J. Press. Vessels Pip. 149, 43–54. [CrossRef] [Google Scholar]
- Orazem M. (ed). (2014) Underground pipeline corrosion, No. 63, Elsevier, United Kingdom. [Google Scholar]
- Xu L.Y., Cheng Y.F. (2013) Development of a finite element model for simulation and prediction of mechanoelectrochemical effect of pipeline corrosion, Corros. Sci. 73, 150–160. [Google Scholar]
- Ilman M.N. (2014) Analysis of internal corrosion in subsea oil pipeline, Case Stud. Eng. Fail. Anal. 2, 1, 1–8. [Google Scholar]
- Creager M., Paris P.C. (1967) Elastic field equations for blunt cracks with reference to stress corrosion cracking, Int. J. Fract. Mech. 3, 4, 247–252. [CrossRef] [Google Scholar]
- Oldfield J.W., Sutton W.H. (1978) Crevice corrosion of stainless steels: I. A mathematical model, Br. Corros. J. 13, 1, 13–22. [CrossRef] [Google Scholar]
- Hasan F., Iqbal J., Ahmed F. (2007) Stress corrosion failure of high-pressure gas pipeline, Eng. Fail. Anal. 14, 5, 801–809. [Google Scholar]
- Wilde B.E., Williams E. (1971) The use of current/voltage curves for the study of localized corrosion and passivity breakdown on stainless steels in chloride media, Electrochim. Acta 16, 11, 1971–1985. [Google Scholar]
- Brown S.A., Flemming C.A.C., Kawalec J.S., Placko H.E., Vassaux C., Merritt K., Payer J.H., Kraay M.J. (1995) Fretting corrosion accelerates crevice corrosion of modular hip tapers, J. Appl. Biomater. 6, 1, 19–26. [CrossRef] [PubMed] [Google Scholar]
- Bertolini L., Carsana M., Pedeferri P. (2007) Corrosion behaviour of steel in concrete in the presence of stray current, Corros. Sci. 49, 3, 1056–1068. [Google Scholar]
- Zhu Q., Cao A., Zaifend W., Song J., Shengli C. (2011) Stray current corrosion in buried pipeline, Anti-Corros. Methods Mater. 58, 5, 234–237. [CrossRef] [Google Scholar]
- Young F.R. (1999) Cavitation, World Scientific, London, United Kingdom. [CrossRef] [Google Scholar]
- Edwards M., Ferguson J.F. (1993) Accelerated testing of copper corrosion, J. Am. Water Works Assoc. 85, 10, 105–113. [Google Scholar]
- Liu G., Tree D.A., High M.S. (1994) Relationships between rotating disk corrosion measurements and corrosion in pipe flow, Corrosion 50, 8, 584–593. [CrossRef] [Google Scholar]
- Cole I.S., Marney D. (2012) The science of pipe corrosion: A review of the literature on the corrosion of ferrous metals in soils, Corros. Sci. 56, 5–16. [Google Scholar]
- Sadiq R., Rajani B., Kleiner Y. (2004) Probabilistic risk analysis of corrosion associated failures in cast iron water mains, Reliab. Eng. Syst. Saf. 86, 1, 1–10. [CrossRef] [Google Scholar]
- Sheikh A.K., Boah J.K., Hansen D.A. (1990) Statistical modeling of pitting corrosion and pipeline reliability, Corrosion 46, 3, 190–197. [CrossRef] [Google Scholar]
- Caleyo F., Velázquez J.C., Valor A., Hallen J.M. (2009) Probability distribution of pitting corrosion depth and rate in underground pipelines: A Monte Carlo study, Corros. Sci. 51, 9, 1925–1934. [Google Scholar]
- Caleyo F., Velázquez J.C., Valor A., Hallen J.M. (2009) Markov chain modelling of pitting corrosion in underground pipelines, Corros. Sci. 51, 9, 2197–2207. [Google Scholar]
- Mao X., Liu X., Revie R.W. (1994) Pitting corrosion of pipeline steel in dilute bicarbonate solution with chloride ions, Corrosion 50, 9, 651–657. [CrossRef] [Google Scholar]
- Chaves I.A., Melchers R.E. (2011) Pitting corrosion in pipeline steel weld zones, Corros. Sci. 53, 12, 4026–4032. [Google Scholar]
- Ha T.K., Kwon B.H., Park K.S., Mohapatra D. (2015) Selective leaching and recovery of bismuth as Bi2O3 from copper smelter converter dust, Separat. Purif. Technol. 142, 116–122. [CrossRef] [Google Scholar]
- Senapati P.K., Mohapatra R., Pani G.K., Mishra B.K. (2012) Studies on rheological and leaching characteristics of heavy metals through selective additive in high concentration ash slurry, J. Hazard. Mater. 229, 390–397. [Google Scholar]
- Bond A.M., Wallace G.G. (1983) Simultaneous determination of cadmium, cobalt, copper, lead, mercury and nickel in zinc sulfate plant electrolyte using liquid chromatography with electrochemical and spectrophotometric detection, J. Liq. Chromatogr. 6, 10, 1799–1822. [Google Scholar]
- Van Boven G., Chen W., Rogge R. (2007) The role of residual stress in neutral pH stress corrosion cracking of pipeline steels. Part I: Pitting and cracking occurrence, Acta Mater. 55, 1, 29–42. [Google Scholar]
- Zhang G.A., Yu N., Yang L.Y., Guo X.P. (2014) Galvanic corrosion behavior of deposit-covered and uncovered carbon steel, Corros. Sci. 86, 202–212. [Google Scholar]
- Tan Y., Fwu Y., Bhardwaj K. (2011) Electrochemical evaluation of under-deposit corrosion and its inhibition using the wire beam electrode method, Corros. Sci. 53, 4, 1254–1261. [Google Scholar]
- Li X., Shang C., Ma X., Gault B., Subramanian S.V., Sun J., Misra R.D.K. (2017) Elemental distribution in the martensite–austenite constituent in intercritically reheated coarse-grained heat-affected zone of a high-strength pipeline steel, Scrip. Mater. 139, 67–70. [CrossRef] [Google Scholar]
- Tullis J.P. (1989) Hydraulics of pipelines: Pumps, valves, cavitation, transients, John Wiley & Sons, USA. [CrossRef] [Google Scholar]
- Provoost G.A. (1976) Investigation into cavitation in a prototype pipeline caused by water hammer, in: NASA STI/Recon, Technical Report No. 78. [Google Scholar]
- Was G.S., Ampornrat P., Gupta G., Teysseyre S., West E.A., Allen T.R., Sridharan K., Tan L., Chen Y., Ren X., Pister C. (2007) Corrosion and stress corrosion cracking in supercritical water, J. Nucl. Mater. 371, 1–3, 176–201. [Google Scholar]
- Anderko A. (2000) Simulation of FeCO3/FeS scale formation using thermodynamic and electrochemical models, in: Corrosion-National Association of Corrosion Engineers Annual Conference, NACE. [Google Scholar]
- Wang S., George K., Nesic S. (2004) High pressure CO2 corrosion electrochemistry and the effect of acetic acid, in: Corrosion/2004, paper, 4375. [Google Scholar]
- Nešic S., Solvi G.T., Enerhaug J. (1995) Comparison of the rotating cylinder and pipe flow tests for flow-sensitive carbon dioxide corrosion, Corrosion 51, 10, 773–787. [CrossRef] [Google Scholar]
- Nesic S., Pots B.F.M., Postlethwaite J., Thevenot N. (1995) Superposition of diffusion and chemical reaction controlled limiting currents-application to CO2 corrosion, J. Corros. Sci. Eng. 1, 3, 1–14. [Google Scholar]
- De Waard C., Lotz U., Dugstad A. (1995) Influence of liquid flow velocity on CO2 corrosion: A semi-empirical model, in: Corrosion-National Association of Corrosion Engineers Annual Conference, NACE, USA. [Google Scholar]
- Gray L.G., Anderson B.G., Danysh M.J., Tremaine P.R. (1990) Effect of pH and temperature on the mechanism of carbon steel corrosion by aqueous carbon dioxide, in: Corrosion/90, paper, 40. [Google Scholar]
- Song F.M., Kirk D.W., Cormack D.E., Wong D. (2005) Barrier properties of two pipeline coatings, in: Corrosion, 2005, NACE International, Houston, USA. [Google Scholar]
- Guidetti G.P., Rigosi G.L., Marzola R. (1996) The use of polypropylene in pipeline coatings, Prog. Organ. Coat. 27, 1–4, 79–85. [CrossRef] [Google Scholar]
- Delanty B., O’Beirne J. (1992) Major field study compares pipeline SSC with coatings, Oil Gas J. (United States) 90, 24. [Google Scholar]
- Crosby T., Wolodko J., Tsaprailis H. (2016) Gap analysis of Canadian pipeline coatings: A review study, in: NACE International Corrosion Conference Proceedings, NACE International, p. 1. [Google Scholar]
- Von Baeckmann W., Schwenk W., Prinz W. (1997) Handbook of cathodic corrosion protection, Elsevier, Houston, USA. [Google Scholar]
- Chen X., Li X.G., Du C.W., Cheng Y.F. (2009) Effect of cathodic protection on corrosion of pipeline steel under disbonded coating, Corros. Sci. 51, 9, 2242–2245. [Google Scholar]
- Shipilov S.A., Le May I. (2006) Structural integrity of aging buried pipelines having cathodic protection, Eng. Fail. Anal. 13, 7, 1159–1176. [Google Scholar]
- Bushman J. B., PE Principal Corrosion Engineer, (2010) Corrosion and cathodic protection theory, Bushman & Associates Inc., Medina. [Google Scholar]
- Gummow R.A., Eng P. (2002) GIC effects on pipeline corrosion and corrosion control systems, J. Atmos. Sol.-Terr. Phys. 64, 16, 1755–1764. [Google Scholar]
- Buchler M., Schoneich H.G. (2009) Investigation of alternating current corrosion of cathodically protected pipelines: Development of a detection method, mitigation measures, and a model for the mechanism, Corrosion 65, 9, 578–586. [CrossRef] [Google Scholar]
- Du Y.X., Zhang G.Z. (2006) Regional cathodic protection in pump stations, Corros. Protect. -Nanchang 27, 8, 417. [Google Scholar]
- Bertolini L., Pedeferri P. (2002) Laboratory and field experience on the use of stainless steel to improve durability of reinforced concrete, Corros. Rev. 20, 1–2, 129–152. [CrossRef] [Google Scholar]
- Louthan M.R. (2008) Hydrogen embrittlement of metals: A primer for the failure analyst, J. Fail. Anal. Prevent. 8, 3, 289–307. [CrossRef] [Google Scholar]
- Ihekwaba N.M., Hope B.B., Hansson C.M. (1996) Pull-out and bond degradation of steel rebars in ECE concrete, Cement Concrete Res. 26, 2, 267–282. [CrossRef] [Google Scholar]
- Stephens M., Nessim M. (2006) A comprehensive approach to corrosion management based on structural reliability methods, in: 2006 International Pipeline Conference. American Society of Mechanical Engineers, pp. 695–704. [Google Scholar]
- Ahammed M. (1998) Probabilistic estimation of remaining life of a pipeline in the presence of active corrosion defects, Int. J. Pres.Vessels Pip. 75, 4, 321–329. [CrossRef] [Google Scholar]
- Teixeira A.P., Soares C.G., Netto T.A., Estefen S.F. (2008) Reliability of pipelines with corrosion defects, Int. J. Pres.Vessels Pip. 85, 4, 228–237. [CrossRef] [Google Scholar]
- Song F.M., Sridhar N. (2008) Modeling pipeline crevice corrosion under a disbonded coating with or without cathodic protection under transient and steady state conditions, Corros. Sci. 50, 1, 70–83. [Google Scholar]
- Song F.M., Kirk D.W., Graydon J.W., Cormack D.E. (2004) Predicting carbon dioxide corrosion of bare steel under an aqueous boundary layer, Corrosion 60, 8, 736–748. [CrossRef] [Google Scholar]
- Song F.M., Kirk D.W., Graydon J.W., Cormack D.E. (2002) CO2 corrosion of bare steel under an aqueous boundary layer with oxygen, J. Electrochem. Soc. 149, 11, B479–B486. [Google Scholar]
- Gileadi E., Kirowa-Eisner E. (2005) Some observations concerning the Tafel equation and its relevance to charge transfer in corrosion, Corros. Sci. 47, 12, 3068–3085. [Google Scholar]
- Pourbaix M. (1966) Atlas of electrochemical equilibria in aqueous solutions, Pergamon Press, New York. [Google Scholar]
- Nesic S., Thevenot N., Crolet J.L., Drazic D. (1996) Electrochemical properties of iron dissolution in the presence of CO2-basics revisited, in: Corrosion 96. NACE International. [Google Scholar]
- Larrey D., Gunaltun Y.M. (2000) Correlation of cases of top of line corrosion with calculated water condensation rates, in: Corrosion 2000. NACE International. [Google Scholar]
- Hedges B., McVeigh L. (1999) The role of acetate in CO2 corrosion: The double whammy, in: Corrosion 99. NACE International. [Google Scholar]
- Garsany Y., Pletcher D., Hedges B.M. (2002) The role of acetate in CO2 corrosion of carbon steel: Has the chemistry been forgotten? in: Corrosion 2002. NACE International. [Google Scholar]
- Carvalho D.S., Joia C.J.B., Mattos O.R. (2005) Corrosion rate of iron and iron–chromium alloys in CO2 medium, Corros. Sci. 47, 12, 2974–2986. [Google Scholar]
- Din M.M., Ngadi M.A., Noor N.M. (2002) Improving inspection data quality in pipeline corrosion assessment, in: Proceedings of the 2009 International Conference on Computer Engineering and Applications. [Google Scholar]
- Valor A., Caleyo F., Hallen J.M., Velázquez J.C. (2013) Reliability assessment of buried pipelines based on different corrosion rate models, Corros. Sci. 66, 78–87. [Google Scholar]
- Dawson S.J., Wharf J., Nessim M. (2008) Development of detailed procedures for comparing successive ILI runs to establish corrosion growth rates, in: PRCI Project EC, pp. 1–2. [Google Scholar]
- Gu B., Kania R., Keith K., Gao M., Coote R. (2003) Advances in corrosion growth analysis and future integrity assessment of pipelines, in: Corrosion 2003. NACE International. [Google Scholar]
- Noor N.M., Ozman N.A.N., Yahaya N.O.R.D.I.N. (2011) Deterministic prediction of corroding pipeline remaining strength in marine environment using DNV RP-F101 (part A), J. Sustain. Sci. Manage 6, 1, 69–78. [CrossRef] [Google Scholar]
- Velázquez J.C., Caleyo F., Valor A., Hallen J.M. (2009) Predictive model for pitting corrosion in buried oil and gas pipelines, Corrosion 65, 5, 332–342. [CrossRef] [Google Scholar]
- Duell J.M., Wilson J.M., Kessler M.R. (2008) Analysis of a carbon composite overwrap pipeline repair system, Int. J. Pres. Vessels Pip. 85, 11, 782–788. [CrossRef] [Google Scholar]
- Kiefner J.F., Kolovich K.M. (2007) Calculation of a corrosion rate using Monte Carlo simulation, in: Corrosion 2007, NACE International, Houston, USA. [Google Scholar]
- Lord W., Sun Y.S., Udpa S.S., Nath S. (1988) A finite element study of the remote field eddy current phenomenon, IEEE Trans. Mag. 24, 1, 435–438. [CrossRef] [Google Scholar]
- Kim W.S., Kim Y.P., Kho Y.T., Choi J.B. (2002) Full scale burst test and finite element analysis on corroded gas pipeline, in: 2002 4th International Pipeline Conference, American Society of Mechanical Engineers, Alberta, Canada, pp. 1501–1508. [Google Scholar]
- Liu P.F., Zheng J.Y., Zhang B.J., Shi P. (2010) Failure analysis of natural gas buried X65 steel pipeline under deflection load using finite element method, Mater. Design 31, 3, 1384–1391. [CrossRef] [Google Scholar]
- Ramm E. (1981) Strategies for tracing the nonlinear response near limit points, in: Nonlinear finite element analysis in structural mechanics, Springer, Berlin, Heidelberg, pp. 63–89. [CrossRef] [Google Scholar]
- Crisfield M.A. (1983) An arc-length method including line searches and accelerations, Int. J. Numer. Methods Eng. 19, 9, 1269–1289. [Google Scholar]
- Liu P.F., Zheng J.Y. (2006) A Monte Carlo finite element simulation of damage and failure in SiC/Ti–Al composites, Mater. Sci. Eng. A 425, 1–2, 260–267. [CrossRef] [Google Scholar]
- Tao R., Moussawi A., Lubineau G., Pan B. (2016) Accurate kinematic measurement at interfaces between dissimilar materials using conforming finite-element-based digital image correlation, Opt. Laser. Eng. 81, 103–112. [CrossRef] [Google Scholar]
- Parkins R.N. (2000) A review of stress corrosion cracking of high pressure gas pipelines, in: Corrosion 2000. NACE International, p. 5. [Google Scholar]
- King F., Jack T.R., Chen W., Wilmott M.J., Fessler R.R., Krist K. (2000) Mechanistic studies of initiation and early stage crack growth for near-neutral pH SCC on pipelines, in: Corrosion 2000. NACE International. [Google Scholar]
- Bagotsky Vladimir S. (eds.) (2005) Fundamentals of electrochemistry, Vol. 44, John Wiley & Sons, New Jersey, USA. [CrossRef] [Google Scholar]
- Park J.J., Pyun S.I., Na K.H., Lee S.M., Kho Y.T. (2002) Effect of passivity of the oxide film on low-pH stress corrosion cracking of API 5L X-65 pipeline steel in bicarbonate solution, Corrosion 58, 4, 329–336. [CrossRef] [Google Scholar]
- Gutman E.M. (1994) Mechanochemistry of solid surfaces, World Scientific Publishing Company, Singapore. [CrossRef] [Google Scholar]
- Zhang T., Sun S. (2019) A coupled Lattice Boltzmann approach to simulate gas flow and transport in shale reservoirs with dynamic sorption, Fuel 246, 196–203. [CrossRef] [Google Scholar]
- Kwun H., Kim S.Y., Choi M.S., Walker S.M. (2004) Torsional guided-wave attenuation in coal-tar-enamel-coated, buried piping, NDT E Int. 37, 8, 663–665. [Google Scholar]
- Fred W., Lawn R.J. (1956) Coating compositions containing coal tar pitch and an epoxy ether resin. U.S. Patent No. 2,765,288. [Google Scholar]
- Dempster W., Kellner J.D., Serra J.M., DeCoste L.D. (1994) U.S. Patent No. 5,300,356, U.S. Patent and Trademark Office, Washington, DC. [Google Scholar]
- Roche M., Melot D., Paugam G. (2006) Recent experience with pipeline coating failures, J. Protect. Coat. Lin. 23, 10, 18. [Google Scholar]
- Sloan R.N. (1967) Pipeline coatings, in: Control of Pipeline Corrosion (2001), 2nd ed., NACE International, Houston, TX, pp. 7–20. [Google Scholar]
- Niu L., Cheng Y.F. (2008) Development of innovative coating technology for pipeline operation crossing the permafrost terrain, Construct. Build. Mater. 22, 4, 417–422. [CrossRef] [Google Scholar]
- Malik A.U., Andijani I., Ahmed S., Al-Muaili F. (2002) Corrosion and mechanical behavior of fusion bonded epoxy (FBE) in aqueous media, Desalination 150, 3, 247–254. [Google Scholar]
- Doidjo M.T., Belec L., Aragon E., Joliff Y., Lanarde L., Meyer M., Bonnaudet M., Perrin F.X. (2013) Influence of silane-based treatment on adherence and wet durability of fusion bonded epoxy/steel joints, Prog. Org. Coat. 76, 12, 1765–1772. [CrossRef] [Google Scholar]
- Deshpande S., Sampath S., Zhang H. (2006) Mechanisms of oxidation and its role in microstructural evolution of metallic thermal spray coatings – case study for Ni–Al, Surf. Coat. Technol. 200, 18–19, 5395–5406. [Google Scholar]
- Brito V.S., Bastos I.N., Costa H.R.M. (2012) Corrosion resistance and characterization of metallic coatings deposited by thermal spray on carbon steel, Mater. Design 41, 282–288. [CrossRef] [Google Scholar]
- Lilly M.T., Ihekwoaba S.C., Ogaji S.O.T., Probert S.D. (2007) Prolonging the lives of buried crude-oil and natural-gas pipelines by cathodic protection, Appl. Energy 84, 9, 958–970. [Google Scholar]
Issue |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Advanced modeling and simulation of flow in subsurface reservoirs with fractures and wells for a sustainable industry
|
|
---|---|---|
Article Number | 42 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.2516/ogst/2020031 | |
Published online | 18 June 2020 |
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.