Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Article Number 40
Number of page(s) 15
Published online 16 June 2020
  • William J.K.M., Ponmani S., Samuel R., Nagarajan R., Sangwai J.S. (2014) Effect of CuO and ZnO nanofluids in xanthan gum on thermal, electrical and high pressure rheology of water-based drilling fluids, J. Pet. Sci. Eng. 117, 15–27. [Google Scholar]
  • Shahbazi K. (2006) Oxidation and rheological aspects of oil and synthetic-based drilling fluids at elevated pressures and temperatures, Doctoral thesis, Uinversity of Calgary, Calgary. [Google Scholar]
  • Al-Sabagh A., Noor El-Din M., Mohamed H. (2009) Oil Base Mud. Part I: Synthesis of some local surfactants used as primary emulsifiers for oil base mud and evaluation of their rheology properties, J. Dispers. Sci. Technol. 30, 7, 1079–1090. [Google Scholar]
  • Halali M.A., Ghotbi C., Tahmasbi K., Ghazanfari M.H. (2016) The role of carbon nanotubes in improving thermal stability of polymeric fluids: Experimental and modeling, Indus. Eng. Chem. Res. 55, 27, 7514–7534. [CrossRef] [Google Scholar]
  • Madkour T.M., Fadl S., Dardir M., Mekewi M.A. (2016) High performance nature of biodegradable polymeric nanocomposites for oil-well drilling fluids, Egyptian J. Pet. 25, 2, 281–291. [CrossRef] [Google Scholar]
  • Agarwal S., Tran P., Soong Y., Martello D., Gupta R.K. (2011) Flow behavior of nanoparticle stabilized drilling fluids and effect of high temperature aging, in AADE National Technical Conference and Exhibition, Houston, pp. 12–14. [Google Scholar]
  • Ozbayoglu M.E., Saasen A., Sorgun M., Svanes K. (2008) Effect of pipe rotation on hole cleaning for water-based drilling fluids in horizontal and deviated wells, in IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition, Society of Petroleum Engineers. [Google Scholar]
  • Abduo M., Dahab A., Abuseda H., AbdulAziz A.M., Elhossieny M. (2016) Comparative study of using water-based mud containing multiwall carbon nanotubes versus oil-based mud in HPHT fields, Egyptian J. Pet. 25, 4, 459–464. [CrossRef] [Google Scholar]
  • El-Diasty A.I., Ragab A.M.S. (2013) Applications of nanotechnology in the oil & gas industry: Latest trends worldwide & future challenges in Egypt, in North Africa Technical Conference and Exhibition, Society of Petroleum Engineers. [Google Scholar]
  • Li K., Wang D., Jiang S. (2018) Review on enhanced oil recovery by nanofluids, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 73, 37. [CrossRef] [Google Scholar]
  • Shchukin D.G., Sukhorukov G.B.J.A.M. (2004) Nanoparticle synthesis in engineered organic nanoscale reactors, J. Adv Mater. 16, 8, 671–682. [CrossRef] [Google Scholar]
  • Godson L., Raja B., Lal D.M., Wongwises S. (2010) Enhancement of heat transfer using nanofluids – an overview, J. Renewable Sustainable Energy 14, 2, 629–641. [CrossRef] [Google Scholar]
  • Rao Y. (2010) Nanofluids: stability, phase diagram, rheology and applications, Particuology Journal 8, 6, 549–555. [CrossRef] [Google Scholar]
  • Qalandari R., Qalandari E. (2018) A review on the potential application of nano graphene as drilling fluid modifier in petroleum industry, Int. Refereed J. Eng. Sci. (IRJES) 07, 1–7. [Google Scholar]
  • Shadravan A., Amani M. (2012) HPHT 101: What every engineer or geoscientist should know about high pressure hightemperature wells, in: SPE Kuwait International Petroleum Conference and Exhibition, Society of Petroleum Engineers. [Google Scholar]
  • Jordan J.W., Hook B., Finlayson C. (1950) The Organophilic Bentonites. II. Organic Liquid Gels, J. Phys. Chem. 54, 8, 1196–1208. [Google Scholar]
  • Hato M.J., Zhang K., Ray S.S., Choi H.J. (2011) Rheology of organoclay suspension, Colloid Polym. Sci. 289, 10, 1119. [Google Scholar]
  • De Paiva L.B., Morales A.R., Díaz F.R.V. (2008) Organoclays: properties, preparation and applications, Appl. Clay Sci. 42, 1–2, 8–24. [Google Scholar]
  • King H. Jr., Milner S.T., Lin M.Y., Singh J.P., Mason T. (2007) Structure and rheology of organoclay suspensions, Phys. Rev. E 75, 2, 021403. [Google Scholar]
  • Hermoso J., Martínez-Boza F.J., Gallegos C. (2017) Modeling pressure-viscosity behavior of oil-based drilling fluids, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 72, 4, 18. [CrossRef] [Google Scholar]
  • Zhuang G., Gao J., Peng S., Zhang Z. (2019) Synergistically using layered and fibrous organoclays to enhance the rheological properties of oil-based drilling fluids, Appl. Clay Sci. 172, 40–48. [Google Scholar]
  • Zhuang G., Zhang Z., Peng S., Gao J., Jaber M. (2018) Enhancing the rheological properties and thermal stability of oil-based drilling fluids by synergetic use of organo-montmorillonite and organo-sepiolite, Appl. Clay Sci. 161, 505–512. [Google Scholar]
  • Zhuang G., Zhang Z., Jaber M. (2019) Organoclays used as colloidal and rheological additives in oil-based drilling fluids: An overview, Appl. Clay Sci. 177, 63–81. [Google Scholar]
  • Ghavami M., Hasanzadeh B., Zhao Q., Javadi S., Kebria D.Y. (2018) Experimental study on microstructure and rheological behavior of organobentonite/oil-based drilling fluid, J. Mol. Liq. 263, 147–157. [Google Scholar]
  • Agarwal S., Phuoc T.X., Soong Y., Martello D., Gupta R.K. (2013) Nanoparticle-stabilised invert emulsion drilling fluids for deep-hole drilling of oil and gas, Can. J. Chem. Eng. 91, 10, 1641–1649. [Google Scholar]
  • Zhuang G., Wu H., Zhang H., Zhang Z., Zhang X., Liao L. (2017) Rheological properties of organo-palygorskite in oil-based drilling fluids aged at different temperatures, Appl. Clay Sci. 137, 50–58. [Google Scholar]
  • Hermoso J., Martinez-Boza F., Gallegos C. (2014) Influence of viscosity modifier nature and concentration on the viscous flow behaviour of oil-based drilling fluids at high pressure, Appl. Clay Sci. 87, 14–21. [Google Scholar]
  • Zhuang G., Zhang H., Wu H., Zhang Z., Liao L. (2017) Influence of the surfactants’ nature on the structure and rheology of organo-montmorillonite in oil-based drilling fluids, Appl. Clay Sci. 135, 244–252. [Google Scholar]
  • Fazelabdolabadi B., Khodadadi A.A., Sedaghatzadeh M. (2015) Thermal and rheological properties improvement of drilling fluids using functionalized carbon nanotubes, Appl. Nanosci. 5, 6, 651–659. [Google Scholar]
  • Yearsley K.M., Mackley M.R., Chinesta F., Leygue A. (2012) The rheology of multiwalled carbon nanotube and carbon black suspensions, J. Rheol. 56, 6, 1465–1490. [CrossRef] [Google Scholar]
  • Yang Y., Grulke E.A., Zhang Z.G., Wu G. (2006) Thermal and rheological properties of carbon nanotube-in-oil dispersions, J. Appl. Phys. 99, 11, 114307. [Google Scholar]
  • Nasser J., Jesil A., Mohiuddin T., Al Ruqeshi M., Devi G., Mohataram S. (2013) Experimental investigation of drilling fluid performance as nanoparticles, World J. Nano Sci. Eng. 3, 03, 57. [CrossRef] [Google Scholar]
  • Ho C.Y., Yusup S., Soon C.V., Arpin M.T. (2016) Rheological behaviour of graphene nano-sheets in hydrogenated oil-based drilling fluid, Procedia Eng. 148, 49–56. [Google Scholar]
  • Chai Y.H., Yusup S., Chok V.S., Irawan S., Singh J., Chin B. (2017) Comparison of rheological properties of graphene/carbon nanotube hydrogenated oil based biodegradable drilling fluid, in: IOP Conference Series: Materials Science and Engineering, Vol. 206, IOP Publishing, p. 012042. [Google Scholar]
  • Ribeiro J.M., Eler F.M., Martins A.L., Scheid C.M., Calçada L.A., da Cruz Meleiro L.A. (2017) A simplified model applied to the barite sag and fluid flow in drilling muds: Simulation and experimental results, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 72, 4, 23. [CrossRef] [Google Scholar]
  • Magalhães S., Calçada L., Scheid C., Almeida H., Waldmann A. (2016) Improving drilling performance with continuous online measurements of electrical stability and conductivity in oil based drilling fluids, J. Pet. Sci. Eng. 146, 369–379. [Google Scholar]
  • Fingas M., Fieldhouse B. (2003) Studies of the formation process of water-in-oil emulsions, Marine Pollut. Bull. 47, 9–12, 369–396. [CrossRef] [Google Scholar]
  • Pal R. (1994) Techniques for measuring the composition (oil and water content) of emulsions – a state of the art review, Colloids Surf. A Physicochem. Eng. Aspects 84, 2–3, 141–193. [CrossRef] [Google Scholar]
  • Crittendon B.C. (1958) Device for measuring stability of water-in-oil emulsion, ed: Google Patents. [Google Scholar]
  • Messenger J. (1965) Emulsion control using electrical stability potential, J. Pet. Technol. 17, 10, 1229–1231. [CrossRef] [Google Scholar]
  • Growcock F., Ellis C., Schmidt D., Azar J. (1994) Electrical stability, emulsion stability, and wettability of invert oil-based muds, SPE Drill. Complet. 9, 01, 39–46. [CrossRef] [Google Scholar]
  • Yusof M.A.M., Hanafi N.H. (2015) Vital roles of nano silica in synthetic based mud for high temperature drilling operation, in: AIP Conference Proceedings, Vol. 1669, AIP Publishing, p. 020029. [Google Scholar]
  • Fink J. (2015) Petroleum engineer’s guide to oil field chemicals and fluids, Gulf Professional Publishing. [Google Scholar]
  • Taha N.M., Lee S. (2015) Nano graphene application improving drilling fluids performance, in: International Petroleum Technology Conference, 6–9 December, Doha, Qatar. [Google Scholar]
  • Devereux S. (1998) Practical well planning and drilling manual, PennWell Books. [Google Scholar]
  • Rahmati A.S., Tatar A. (2019) Application of Radial Basis Function (RBF) neural networks to estimate oil field drilling fluid density at elevated pressures and temperatures, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 74, 50. [CrossRef] [Google Scholar]
  • Fagundes F.M., Santos N.B., Damasceno J.J.R., Arouca F.O. (2018) Study on the stability of a shear-thinning suspension used in oil well drilling, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 73, 10. [CrossRef] [Google Scholar]
  • Parizad A., Ghahfarokhi A.K., Shahbazi K., Daryasafar A., Sayahi T., Meybodi M.K. (2019) Experimental investigation of the effect of TiO2 nanofluid and KCl salt on polymeric water-based drilling fluid properties, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 74, 9. [CrossRef] [Google Scholar]
  • Hermoso J., Martínez-Boza F., Gallegos C. (2014) Combined effect of pressure and temperature on the viscous behaviour of all-oil drilling fluids, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 69, 7, 1283–1296. [CrossRef] [Google Scholar]
  • Rafati R., Smith S.R., Haddad A.S., Novara R., Hamidi H. (2018) Effect of nanoparticles on the modifications of drilling fluids properties: a review of recent advances, J. Pet. Sci. Eng. 161, 61–76. [Google Scholar]
  • Meng X., Zhang Y., Zhou F., Chu P.K. (2012) Effects of carbon ash on rheological properties of water-based drilling fluids, J. Pet. Sci. Eng. 100, 1–8. [Google Scholar]
  • Al-Mahdawi F.H., Saad K. (2018) Enhancement of Drilling Fluid Properties Using Nanoparticles, Iraqi J. Chem. Pet. Eng. 19, 2, 21–26. [CrossRef] [Google Scholar]
  • Khalil M., Jan B.M., Raman A.A.A. (2011) Rheological and statistical evaluation of nontraditional lightweight completion fluid and its dependence on temperature, J. Pet. Sci. Eng. 77, 1, 27–33. [Google Scholar]
  • Falcone P.M., Chillo S., Giudici P., Del Nobile M.A. (2007) Measuring rheological properties for applications in quality assessment of traditional balsamic vinegar: description and preliminary evaluation of a model, J. Food Eng. 80, 1, 234–240. [Google Scholar]
  • Falode O., Ehinola O., Nebeife P. (2008) Evaluation of local bentonitic clay as oil well drilling fluids in Nigeria, Appl. Clay Sci. 39, 1–2, 19–27. [Google Scholar]
  • Brigatti M.F., Galan E., Theng B. (2006) Structures and mineralogy of clay minerals, Dev. Clay Sci. 1, 19–86. [Google Scholar]
  • Shakib J.T., Kanani V., Pourafshary P. (2016) Nano-clays as additives for controlling filtration properties of water–bentonite suspensions, J. Pet. Sci. Eng. 138, 257–264. [Google Scholar]
  • Bourgoyne A.T. Jr., Millheim K.K., Chenevert M.E., Young F.S. Jr. (1986) Applied drilling engineering, Vol. 2, Society of Petroleum Engineers. [Google Scholar]
  • Amoco-Production-Company (2010) Drilling fluids manual. [Google Scholar]
  • Moslemizadeh A., Shadizadeh S.R., Moomenie M. (2015) Experimental investigation of the effect of henna extract on the swelling of sodium bentonite in aqueous solution, Appl. Clay Sci. J. 105, 78–88. [CrossRef] [Google Scholar]
  • Parsons L.W., Wilson O. Jr. (1921) Some Factors Affecting the Stability and Inversion of Oil-Water Emulsions, Indus. Eng. Chem. 13, 12, 1116–1123. [CrossRef] [Google Scholar]
  • Ghosn R., Mihelic F., Hochepied J.-F., Dalmazzone D. (2017) Silica nanoparticles for the stabilization of W/O emulsions at HTHP conditions for unconventional reserves drilling operations, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 72, 4, 21. [CrossRef] [Google Scholar]
  • Jha P.K., Mahto V., Saxena V. (2014) Emulsion based drilling fluids: an overview, Int. J. ChemTech. Res. 6, 4, 2306–2315. [Google Scholar]
  • Ali A., Schmidt D., Harvey J., III (1987) Investigation of the electrical stability test for oil muds, in: SPE/IADC Drilling Conference, Society of Petroleum Engineers. [Google Scholar]
  • Zheng B., Zheng B., Carr A.J., Yu X., McClements D.J., Bhatia S.R. (2020) Emulsions stabilized by inorganic nanoclays and surfactants: stability, viscosity, and implications for applications, Inorg. Chem. Acta 508, 119566. [CrossRef] [Google Scholar]
  • Goud M.C., Joseph G. (2006) Drilling fluid additives and engineering to improve formation integrity, in: SPE/IADC Indian Drilling Technology Conference and Exhibition, Society of Petroleum Engineers. [Google Scholar]
  • Zhang L., Lei Q., Luo J., Zeng M., Wang L., Huang D., Wang X., Mannan S., Peng B., Cheng Z. (2019) Natural halloysites-based janus platelet surfactants for the formation of pickering emulsion and enhanced oil recovery, Sci. Rep. 9, 1, 1–8. [CrossRef] [PubMed] [Google Scholar]
  • Chevalier Y., Bolzinger M.-A. (2013) Emulsions stabilized with solid nanoparticles: Pickering emulsions, Colloids Surf A Physicochem. Eng. Aspects 439, 23–34. [CrossRef] [Google Scholar]
  • Buerschaper R.A. (1944) Thermal and electrical conductivity of graphite and carbon at low temperatures, J. Appl. Phys. 15, 5, 452–454. [Google Scholar]
  • Mohamadian N., Ghorbani H., Wood D., Hormozi H.K. (2018) Rheological and filtration characteristics of drilling fluids enhanced by nanoparticles with selected additives: an experimental study, Adv. Geo-Energy Res. 2, 3, 228–236. [CrossRef] [Google Scholar]
  • Annis M.R., Smith M.V. (1996) Drilling fluids technology, Revised Edition, Exxon Company, USA. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.