Advanced modeling and simulation of flow in subsurface reservoirs with fractures and wells for a sustainable industry
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Advanced modeling and simulation of flow in subsurface reservoirs with fractures and wells for a sustainable industry
Numéro d'article 41
Nombre de pages 13
Publié en ligne 18 juin 2020
  • Kim J., Tchelepi H.A., Juanes R. (2011) Stability and convergence of sequential methods for coupled flow and geomechanics: Fixed-stress and fixed-strain splits, Comput. Meth. Appl. Mech. Eng. 200, 13, 1591–1606. [CrossRef] [Google Scholar]
  • Huang Z.Q., Winterfeld P.H., Xiong Y., Wu Y.S., Yao J. (2015) Parallel simulation of fully-coupled thermal-hydro-mechanical processes in CO2 leakage through fluid-driven fracture zones, Int. J. Greenhouse Gas Control 34, 39–51. [CrossRef] [Google Scholar]
  • Li S., Li X., Zhang D. (2016) A fully coupled thermo-hydro-mechanical, three-dimensional model for hydraulic stimulation treatments, J. Nat. Gas Sci. Eng. 34, 64–84. [Google Scholar]
  • Jin L., Zoback M.D. (2017) Fully coupled nonlinear fluid flow and poroelasticity in arbitrarily fractured porous media: A hybrid-dimensional computational model, J. Geophys. Res.: Solid Earth 122, 10, 7626–7658. [CrossRef] [Google Scholar]
  • Terzaghi K. (1943) Theoretical soil mechanics, John Wiley and Sons, New York, NY. [CrossRef] [Google Scholar]
  • Biot M.A. (1941) General theory of three-dimensional consolidation, J. Appl. Phys. 12, 2, 155. [Google Scholar]
  • Cheng H.D., Abousleiman Y., Detournay E., Cui L., Roegiers J.C. (1996) Mandel’s problem revisited, Géotechnique 46, 2, 187–195. [CrossRef] [Google Scholar]
  • Murad M.A., Loula A.F.D. (1994) On stability and convergence of finite element approximations of biot’s consolidation problem, Int. J. Numer. Meth. Eng. 37, 4, 645–667. [CrossRef] [MathSciNet] [Google Scholar]
  • Jha B., Juanes R. (2007) A locally conservative finite element framework for the simulation of coupled flow and reservoir geomechanics, Acta Geotech. 2, 3, 139–153. [CrossRef] [Google Scholar]
  • Deng Y., Sun D., Liang Y., Yu B., Wang P. (2017) Implementation of the ideal algorithm for complex steady-state incompressible fluid flow problems in openfoam, Int. Commun. Heat Mass Trans. 88, 63–73. [CrossRef] [Google Scholar]
  • Li T.Y., Gao Y.Q., Han D.X., Yang F.S., Yu B. (2020) A novel POD reduced-order model based on EDFM for steady-state and transient heat transfer in fractured geothermal reservoir, Int. J. Heat Mass Trans. 146, 2020, 118783. [CrossRef] [Google Scholar]
  • Vasilyeva M., Chung E.T., Efendiev Y., Kim J. (2018) Constrained energy minimization based upscaling for coupled flow and mechanics, J. Comput. Phys. 376, 660–674. doi: 10.1016/ [Google Scholar]
  • Asadi R., Ataie-Ashtiani B., Simmons C.T. (2014) Finite volume coupling strategies for the solution of a Biot consolidation model, Comput. Geotech. 55, 494–505. [Google Scholar]
  • Nordbotten M.J. (2014) Finite volume hydromechanical simulation in porous media, Water Res. Res. 50, 5, 4379–4394. [CrossRef] [Google Scholar]
  • Tang T., Hededal O., Cardiff P. (2015) On finite volume method implementation of poro-elasto-plasticity soil model, Int. J. Numer. Anal. Meth. Geomech. 39, 13, 1410–1430. [CrossRef] [Google Scholar]
  • Nilsen H.M., Nordbotten J., Raynaud X. (2018) Comparison between cell-centered and nodal-based discretization schemes for linear elasticity, Comput. Geosci. 22, 1, 233–260. [Google Scholar]
  • Suliman R., Oxtoby O.F., Malan A.G., Kok S. (2014) An enhanced finite volume method to model 2D linear elastic structures, Appl. Math. Model. 38, 7–8, 2265–2279. [Google Scholar]
  • Belytschko T., Black T. (1999) Elastic crack growth in finite elements with minimal remeshing, Int. J. Numer. Meth. Eng. 45, 5, 601–620. [CrossRef] [Google Scholar]
  • Bordas S., Nguyen P.V., Dunant C., Guidoum A., Nguyen-Dang H. (2007) An extended finite element library, Int. J. Numer. Meth. Eng. 71, 6, 703–732. [CrossRef] [Google Scholar]
  • Yan X., Huang Z., Yao J., Li Y., Fan D., Zhang K. (2018) An efficient hydro-mechanical model for coupled multi-porosity and discrete fracture porous media, Comput. Mech. 62, 943–962. [Google Scholar]
  • Shi F., Wang X., Liu C., Liu H., Wu H. (2017) An xfem-based method with reduction technique for modeling hydraulic fracture propagation in formations containing frictional natural fractures, Eng. Fract. Mech. 173, 64–90. [Google Scholar]
  • Ucar E., Keilegavelen E., Berre I., Nordbotten J.M. (2018) A finite-volume discretization for deformation of fractured media, Comput. Geosci. 22, 4, 993–1007. [Google Scholar]
  • Deb R., Jenny P. (2014) Modeling of failure along predefined planes in fractured reservoirs, in: Proceedings, Thirty-Ninth Workshop Geothermal Reservoir Engineering, Stanford University, Stanford, CA. [Google Scholar]
  • Deb R., Jenny P. (2017) Finite volume-based modeling of flow-induced shear failure along fracture manifolds, Int. J. Numer. Anal. Meth. Geomech. 41, 3, 1922–1942. [CrossRef] [Google Scholar]
  • Deb R., Jenny P. (2017) Modeling of shear failure in fractured reservoirs with a porous matrix, Comput. Geosci. 21, 5–6, 1119–1134. [Google Scholar]
  • Deb R. (2018) Numerical modeling of fluid injection induced shear failure, tensile opening and flow-mechanics coupling, PhD Thesis, ETH, Zurich. [Google Scholar]
  • Karvounis D.C., Jenny P. (2016) Adaptive hierarchical fracture model for enhanced geothermal systems, Multiscale Model. Simul. 14, 1, 207–231. [Google Scholar]
  • Lee S.H., Lough M.F., Jensen C.L. (2001) Hierarchical modeling of flow in naturally fractured formations with multiple length scales, Water Resour. Res. 37, 3, 443–455. [Google Scholar]
  • Moinfar A., Sepehrnoori K., Johns R.T., Varavei A. (2013) Coupled geomechanics and flow simulation for an embedded discrete fracture model, Society of Petroleum Engineers. [Google Scholar]
  • Gunnar J., Miller S.A. (2017) On the role of thermal stresses during hydraulic stimulation of geothermal reservoirs, Geofluids 2017, 1–15. [Google Scholar]
  • Gunnar J., Valley B., Miller S.A. (2018) THERMAID-A matlab package for thermo-hydraulic modeling and fracture stability analysis in fractured reservoirs, arXiv:1806.10942 [physics.comp-ph] [Google Scholar]
  • Shah S., Møyner O., Tene M., Lie K.-A., Hajibeygi H. (2016) The multiscale restriction smoothed basis method for fractured porous media (F-MsRSB), J. Comput. Phys. 318, 36–57. [Google Scholar]
  • Peaceman D.W. (1983) Interpretation of well-block pressures in numerical reservoir simulation with nonsquare gridblocks and anisotropic permeability, Soc. Pet. Eng. J. 8, 3, 183–194. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.