Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Article Number 45
Number of page(s) 13
DOI https://doi.org/10.2516/ogst/2020041
Published online 07 July 2020
  • Jia B., Tsau J.S., Barati R. (2019) A review of the current progress of CO2 injection and carbon storage in shale oil reservoirs, Fuel 236, 404–427. [Google Scholar]
  • Hustad O.S., Holt T. (1992) Gravity stable displacement of oil by hydrocarbon gas after waterflooding, in: Paper SPE 24116 Presented at the SPE/DOE Eighth Symposium on Enhanced Oil Recovery, Tulsa, Oklahoma, 22–24 April. [Google Scholar]
  • Donaldson, E.C., Chilingarian G.V. (2009) Enhanced Oil Recovery, II: Processes and Operations (Developments in Petroleum Science), Elsevier Science Ltd. ISBN: 9780444429339. [Google Scholar]
  • Kulkarni M.M., Rao D.N. (2005) Experimental investigation of miscible and immiscible water-alternating-gas (wag) process performance, J. Pet. Sci. Eng. 48, 1–2, 1–20. [Google Scholar]
  • Pariani G.J., McColloch K.A., Warden S.L., Edens D.R. (1992) An approach to optimize economics in a west Texas CO2 flood, J. Pet. Technol. 44, 9, 984. [Google Scholar]
  • Chen B., Reynolds A.C. (2016) Ensemble-based optimization of the water-alternating-gas-injection process, SPE J. 21, 3, 786–798. [Google Scholar]
  • Kulkarni M.M., Rao D.N. (2004) Experimental investigation of various methods of tertiary gas injection, in: SPE Annual Technical Conference and Exhibition, 26–29 September, Houston, Texas. [Google Scholar]
  • Changlin-lin L., Xin-wei L., Xiao-liang Z., Ning L., Hong-na D., Huan W., Yong-ge L. (2013) Study on enhanced oil recovery technology in low permeability heterogeneous reservoir by water-alternate-gas of CO2 flooding, in: SPE Asia Pacific Oil and Gas Conference and Exhibition, 22–24 October, Jakarta, Indonesia. [Google Scholar]
  • Pariani G.J., McColloch K.A., Warden S.L., Edens D.R. (1992) An approach to optimize economics in a west Texas CO2 flood, J. Pet. Technol. 44, 9, 984–1025. [Google Scholar]
  • Afzali S., Rezaei N., Zendehboudi S. (2018) A comprehensive review on enhanced oil recovery by water alternating gas (wag) injection, Fuel 227, 218–246. [Google Scholar]
  • Tabzar A., Fathinasab M., Salehi A., Bahrami B., Mohammadi A.H. (2018) Multiphase flow modeling of asphaltene precipitation and deposition, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 73, 3, 51. [Google Scholar]
  • Huang E.T.S. (1992) The effect of oil composition and asphaltene content on CO2 displacement, in: Presented at the SPE/DOE Eighth Symposium on Enhanced Oil Recovery, 22–24 April, Tulsa, OK. Paper SPE 24131. [Google Scholar]
  • Hamadou R., Khodja M., Kartout M., Jada A. (2008) Permeability reduction by asphaltenes and resins deposition in porous media, Fuel 87, 10–11, 2178–2185. [Google Scholar]
  • Collins S., Melrose J. (1983) In adsorption of asphaltenes and water on reservoir rock minerals, in: SPE Oilfield and Geothermal Chemistry Symposium, 1–3 June, Denver, Colorado. [Google Scholar]
  • Clementz D. (1982) In alteration of rock properties by adsorption of petroleum heavy ends: Implications for enhanced oil recovery, in: Paper SPE 10683, SPE, DOE Symposium on Enhanced Oil Recovery, Tulsa, 4–7 April. [Google Scholar]
  • González G., Moreira M.B.C. (1991) The wettability of mineral surfaces containing adsorbed asphaltene, Colloids Surf. 58, 3, 293–302. [Google Scholar]
  • Al-Maamari R.S.H., Buckley J.S. (2003) Asphaltene precipitation and alteration of wetting: the potential for wettability changes during oil production, SPE Reserv. Evalu. Eng. 6, 4, 210–214. [Google Scholar]
  • Soorghali F., Zolghadr A., Ayatollahi S. (2014) Effect of resins on asphaltene deposition and the changes of surface properties at different pressures: A microstructure study, Energy Fuels 28, March–April, 2415–2421. [Google Scholar]
  • Borton D., Pinkston D.S., Hurt M.R., Tan X., Azyat K., Scherer A., Tykwinski R., Gray M., Qian K., Kenttämaa H.I. (2010) Molecular structures of asphaltenes based on the dissociation reactions of their ions in mass spectrometry, Energy Fuels 24, September–October, 5548–5559. [Google Scholar]
  • Andersen S. (1994) Effect of precipitation temperature on the composition of n-heptane asphaltenes, Liq. Fuels Technol. 12, 1, 51–74. [Google Scholar]
  • Kim S.T., Boudh-Hir M.E., Mansoori G.A. (1990) The role of asphaltene in wettability reversal, in: SPE Annual Technical Conference and Exhibition, 23–26 September, New Orleans, Louisiana. [Google Scholar]
  • Buckley J.S., Wang J. (2002) Crude oil and asphaltene characterization for prediction of wetting alteration, J. Pet. Sci. Eng. 33, 1, 195–202. [Google Scholar]
  • Mansoori G.A. (1997) Modeling of asphaltene and other heavy organic depositions, J. Pet. Sci. Eng. 17, 101–111. [Google Scholar]
  • Pacheco-Sanchez J.H., Ali Mansoori G. (1998) Prediction of the phase behavior of asphaltene micelle/aromatic hydrocarbon systems, Pet. Sci. Technol. 16, 3–4, 377–394. [Google Scholar]
  • Speight J.G. (1980) The chemistry and technology of petroleum, Appl. Catal. 2, 6, 406–407. [Google Scholar]
  • Mitchell D.L., Speight J.G. (1973) The solubility of asphaltenes in hydrocarbon solvents, Fuel 52, 2, 149–152. [Google Scholar]
  • Speight J.G., Long R.B., Trowbridge T.D. (1984) Factors influencing the separation of asphaltenes from heavy petroleum feedstocks, Fuel 63, 5, 616–620. [Google Scholar]
  • Yen T.F., Erdman J.G., Pollack S.S. (1961) Investigation of the structure of petroleum asphaltenes by x-ray diffraction, Anal. Chem. 33, 11, 1587–1594. [Google Scholar]
  • Alomair O.A., Almusallam A.S. (2013) Heavy crude oil viscosity reduction and the impact of asphaltene precipitation, Energy Fuels 27, 12, 7267–7276. [Google Scholar]
  • Yen A., Yin Y.R., Asomaning S. (2001) Evaluating asphaltene inhibitors: Laboratory tests and field studies, in: Paper SPE 65376-MS presented at the SPE International Symposium on Oilfield Chemistry, 13–16 February, Houston, Texas. [Google Scholar]
  • Vazquez D., Mansoori G.A. (2000) Identification and measurement of petroleum precipitates, J. Pet. Sci. Eng. 26, 49–55. [Google Scholar]
  • Zanganeh P., Ayatollahi S., Alamdari A., Zolghadr A., Kord S. (2011) Asphaltene deposition during CO2 injection and pressure depletion: a visual study, Energy Fuels 25, 753–761. [Google Scholar]
  • Speight J.G. (1996) Asphaltenes: Fundamentals and applications by E.Y. Sheu and O.C. Mullins. Plenum Press, New York, 1995; 236 pages plus index. $79.50. ISBN No. 0-306-45191-3, Liq. Fuels Technol. 14, 10, 1475. [Google Scholar]
  • Leontaritis K.J., Mansoori G.A. (1988) Asphaltene deposition: A survey of field experiences and research approaches, J. Pet. Sci. Eng. 1, 3, 229–239. [Google Scholar]
  • Hashemi-Kiasari H., Hemmati-Sarapardeh A., Mighani S., Mohammadi A.H., Sedaee-Sola B. (2014) Effect of operational parameters on SAGD performance in a dip heterogeneous fractured reservoir, Fuel 122, April, 32–93. [Google Scholar]
  • Idem R.O., Ibrahim H.H. (2002) Kinetics of CO2-induced asphaltene precipitation from various saskatchewan crude oils during CO2 miscible flooding, J. Pet. Sci. Eng. 35, 3, 233–246. [Google Scholar]
  • Abdallah D., Al-Basry A., Zwolle Z., Grutters M., Huo Z., Stankiewicz A. (2010) Asphaltene studies in on-shore Abu Dhabi oil fields. Part II: Investigation and mitigation of asphaltene deposition – A case study, in: Paper SPE 138039-MS Presented at the Abu Dhabi International Petroleum Exhibition and Conference, 1–4 November 2010, Abu Dhabi, UAE. [Google Scholar]
  • Eskin D., Mohammadzadeh O., Akbarzadeh K., Taylor S.D., Ratulowski J. (2016) Reservoir impairment by asphaltenes: A critical review, Can. J. Chem. Eng. 94, 6, 1202–1217. [Google Scholar]
  • Leontaritis K.J., Mansoori G.A. (1988) Asphaltene deposition: A survey of field experiences and research approaches, J. Pet. Sci. Eng. 1, 3, 229–239. [Google Scholar]
  • Gonzalez D.L., Mahmoodaghdam E., Lim F.H., Joshi N.B. (2012) Effects of gas additions to deepwater gulf of mexico reservoir oil: Experimental investigation of asphaltene precipitation and deposition, in: SPE Annual Technical Conference and Exhibition, 8–10 October, San Antonio, Texas, USA. [Google Scholar]
  • Meng X. (2017) Experimental and numerical study of enhanced condensate recovery by gas injection in shale gas-condensate reservoirs, Society of Petroleum Engineers. doi: 10.2118/183645-PA. [Google Scholar]
  • Shen Z., Sheng J.J. (2018) Experimental and numerical study of permeability reduction caused by asphaltene precipitation and deposition during CO2 huff and puff injection in eagle ford shale, Fuel 211, January 1, 432–445. [Google Scholar]
  • Fakher S., Imqam A. (2019) Asphaltene precipitation and deposition during CO2 injection in nano shale pore structure and its impact on oil recovery, Fuel 237, 1029–1039. [Google Scholar]
  • Srivastava R.K., Huang S.S., Dong M. (1999) Asphaltene deposition during CO2 flooding, SPE Prod. Facil. 14, 4, 235–245. [Google Scholar]
  • Ashoori S., Balavi A. (2014) An investigation of asphaltene precipitation during natural production and the CO2 injection process, Pet. Sci. Technol. 32, 11, 1283–1290. [Google Scholar]
  • Behbahani T.J., Ghotbi C., Taghikhani V., Shahrabadi A. (2012) Investigation on asphaltene deposition mechanisms during CO2 flooding processes in porous media: A novel experimental study and a modified model based on multilayer theory for asphaltene adsorption, Energy Fuels 26, 8, 5080–5091. [Google Scholar]
  • Takahashi S., Hayashi Y., Takahashi S., Yazawa N., Sarma H. (2003) In characteristics and impact of asphaltene precipitation during CO2 injection in sandstone and carbonate cores: An investigative analysis through laboratory tests and compositional simulation, in: SPE International Improved Oil Recovery Conference in Asia Pacific, 20–21 October, Kuala Lumpur, Malaysia. [Google Scholar]
  • Shedid S.A., Zekri A.Y. (2006) Formation damage caused by simultaneous sulfur and asphaltene deposition, SPE Prod. Oper. 21, 1, 58–64. [Google Scholar]
  • Ado M.R., Greaves M., Rigby S.P. (2018) Effect of pre-ignition heating cycle method, air injection flux, and reservoir viscosity on the THAI heavy oil recovery process, J. Pet. Sci. Eng. 166, S0920410518302195. [Google Scholar]
  • Sayegh S.G., Maini B.B. (1984) Laboratory evaluation of the CO2 huff-n-puff process for heavy oil reservoirs, J. Can. Pet. Technol. 23, 3, 29–36. [Google Scholar]
  • Simpson M.R. (1988) The CO2 huff “n” puff process in a bottomwater-drive reservoir, J. Pet. Technol. 40, 7, 887–893. [Google Scholar]
  • Silva L.C.R., Anand M. (2013) Probing for the influence of atmospheric CO2 and climate change on forest ecosystems across biomes, Glob. Ecol. Biogeogr. 22, 1, 83–92. [Google Scholar]
  • Chang J., Ciais P., Viovy N., Vuichard N., Herrero M., Havlik P., Soussana J. (2016) Effect of climate change, CO2 trends, nitrogen addition, and land-cover and management intensity changes on the carbon balance of European grasslands, Glob. Chang. Biol. 22, 1, 338–350. [PubMed] [Google Scholar]
  • Todd M.R., Grand G.V. (1993) Enhanced oil recovery using carbon dioxide, Energy Convers. Manage. 34, 9–11, 1157–1164. [Google Scholar]
  • Ahmadbaygi A., Bayati B., Mansouri M., Rezaei H., Riazi M. (2020) Chemical study of asphaltene inhibitors effects on asphaltene precipitation of an Iranian oil field, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 75, 6. [Google Scholar]
  • Ruth D., Wong S. (1990) Centrifuge capillary pressure curves, J. Can. Pet. Technol. 29, 3, 67–72. [Google Scholar]
  • Barberis Canonica L., Galbariggi G., Bertero L., Carniani C. (1995) Experimental study on asphaltene adsorption onto formation rock: An approach to asphaltene formation damage prevention, SPE Prod. Facil. 11, 3, 156–160. [Google Scholar]
  • Yan J., Plancher H., Morrow N.R. (1997) Wettability changes induced by adsorption of asphaltenes, SPE Prod. Facil. 12, 4, 259–266. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.