Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Article Number 44
Number of page(s) 11
DOI https://doi.org/10.2516/ogst/2020029
Published online 06 July 2020
  • Moctezuma-Berthier A., Vizika O., Thovert J.F., Adler P.M. (2004) One- and two-phase permeabilities of vugular porous media, Transp. Porous Media 56, 225–244. [Google Scholar]
  • Norouzi Apourvari S., Arns C.H. (2015) Image-based relative permeability upscaling from the pore scale. Advanced , Water Resour. 95, 16–175. [Google Scholar]
  • Gjetvaj F., Russian A., Gouze P., Dentz M. (2015) Dual control of flow field heterogeneity and immobile porosity on non-fickian transport in berea sandstone, Water Resour. Res. 51, 8273–8293. [Google Scholar]
  • Dvorkin J., Armbruster M., Baldwin C., Fang Q. (2008) The future of digital rock physics: Computational methods vs. lab testing, First Break 26, 63–68. [CrossRef] [Google Scholar]
  • Kalam M.Z. (2012) New technologies in the oil and gas industry, in: Gomes J.S. (ed.), Digital rock physics for fast and accurate special core analysis in carbonates, Chapter 9, INTECH, Croatia, pp. 201–226. [Google Scholar]
  • Andrä H., Combaret N., Dvorkin J., Glatt E., Han J., Kabel M., Keehm Y., Krzikalla F., Lee M., Madonna C., Marsh M., Mukerji T., Saenger E., Sain R., Saxena N., Ricker S., Wiegmann A., Zhan X. (2013) Digital rock physics benchmarks – part I: Imaging and segmentation, Comput. Geosci. 50, 25–32. [Google Scholar]
  • Andrä H., Combaret N., Dvorkin J., Glatt E., Han J., Kabel M., Keehm Y., Krzikalla F., Lee M., Madonna C., Marsh M., Mukerji T., Saenger E., Sain R., Saxena N., Ricker S., Wiegmann A., Zhan X. (2013) Digital rock physics benchmarks – part II: Computing effective properties, Comput. Geosci. 50, 33–43. [Google Scholar]
  • Cnudde V., Boone M.N. (2013) High-resolution x-ray computed tomography in geosciences: A review of the current technology and applications, Earth-Sci. Rev. 123, 1–17. [Google Scholar]
  • Golab A., Knackstedt M.A., Averdunk H., Senden T., Butcher A.R., Jaime P. (2010) 3D porosity and mineralogy characterization in tight gas sandstones, Lead. Edge 29, 1476–1483. [Google Scholar]
  • Dernaika M., Uddin Y.N., Koronfol S., Al Jallad O., Sinclair G. (2015) Multi-scale rock analysis for improved rock typing in complex carbonates, in: International Symposium of the Society of Core Analysts, St. John’s Newfoundland and Labrador, Canada, 16–21 August, 2015 [Google Scholar]
  • Arns C., Knackstedt M., Pinczewski W., Garboczi E. (2002) Computation of linear elastic properties from microtomographic images: Methodology and agreement between theory and experiment, Geophysics 67, 1396–1405. [CrossRef] [Google Scholar]
  • Saenger E., Enzmann F., Keehm Y., Steeb H. (2011) Digital rock physics: Effect of fluid viscosity on effective elastic properties, J. Appl. Geophys. 24, 236–241. [CrossRef] [Google Scholar]
  • Blunt M. (2001) Flow in porous media – pore-network models and multiphase flow, Curr. Opin. Colloid Interface Sci. 6, 197–207. [Google Scholar]
  • Arns C., Knackstedt M., Pinczewski M., Lindquist W. (2001) Accurate estimation of transport properties from microtomographic images, Geophys. Res. Lett. 28, 17, 3361–3644. [Google Scholar]
  • Keehm Y., Mukerji T., Nur A. (2004) Permeability prediction from thin sections: 3D reconstruction and lattice-Boltzmann flow simulation, Geophys. Res. Lett. 31, 4, L04606. [Google Scholar]
  • Ovaysi S., Piri M. (2010) Direct pore-level modeling of incompressible fluid flow in porous media, J. Comput. Phys. 229, 19, 7456–7476. [Google Scholar]
  • Aryana S., Kovscek A.R. (2013) Nonequilibrium effects and multiphase flow in porous media, Transp. Porous Media 97, 373–394. [Google Scholar]
  • Sun H., Vega S., Tao G. (2017) Analysis of heterogeneity and permeability anisotropy in carbonate rock samples using digital rock physics, J. Pet. Sci. Eng. 156, 419–429. [Google Scholar]
  • Saenger E.H., Vialle S., Lebedev M., Uribe D., Osorno M., Duda M., Steeb H. (2016) Digital carbonate rock physics, Solid Earth 7, 1185–1197. [CrossRef] [Google Scholar]
  • Jouini M.S., Vega S., Al-Ratrout A. (2014) Numerical estimation of carbonate rock properties using multiscale images, Geophys. Prospect. 63, 2, 405–421. [Google Scholar]
  • Rahimov K., AlSumaiti A.M., Jouini M.S. (2016) Quantitative analysis of absolute permeability and porosity in carbonate rocks using digital rock physics, in: 22nd Formation Evaluation Symposium of Japan, 29–30 September, Chiba, Japan. Society of Petrophysicists and Well-Log Analysts. SPWLAJFES-2016-J. [Google Scholar]
  • Sun H., Vega S., Tao G. (2016) Determination of transport properties in carbonate rock sample using multi-scale ct images, in: 78th EAGE Conference and Exhibition 2016, 30 May–2 June, Vienna, Austria. [Google Scholar]
  • Latief F.D.E., Fauzi Z., Irayani U., Dougherty G. (2017) The effect of X-ray micro computed tomography image resolution on flow properties of porous rocks, J. Microsc. 266, 1, 69–88. [CrossRef] [PubMed] [Google Scholar]
  • Bazaikin Y., Gurevich B., Iglauer S., Khachkova T., Kolyukhin D., Lebedev M., Lisitsa V., Reshetova G. (2017) Effect of ct image size and resolution on the accuracy of rock property estimates, J. Geophys. Res.: Solid Earth 122, 5, 3635–3647. [CrossRef] [Google Scholar]
  • Boek E.S., Venturoli M. (2010) Lattice-Boltzmann studies of fluid flow in porous media with realistic rock geometries, Comput. Math. Appl. 59, 2305–2314. [Google Scholar]
  • Hosa A., Curtis A., Wood R. (2016) Calibrating lattice Boltzmann flow simulations and estimating uncertainty in the permeability of complex porous media, Adv. Water Res. 94, 60–74. [CrossRef] [Google Scholar]
  • Qian Y.H., d’Humieres D., Lallemand P. (1992) Lattice bgk models for Navier–Stokes equation, Europhys. Lett. 17, 479–484. [Google Scholar]
  • Chen H., Chen S.Y., Matthaeus W.H. (1992) Recovery of the Navier–Stokes equations using a lattice-gas Boltzmann method, Phys. Rev. A 45, 5339–5342. [Google Scholar]
  • Sukop M.C., Thorne D.T. (2006) Lattice Boltzmann modeling: An introduction for geoscientists and engineers, Springer, Berlin. [CrossRef] [Google Scholar]
  • Sukop M.C., Huang H.B., Lin C.L., Deo M.D., Oh K., Miller J.D. (2008) Distribution of multiphase fluids in porous media: Comparison between lattice Boltzmann modeling and micro-x-ray tomography, Phys. Rev. E 77, 026710. [Google Scholar]
  • Li R.R., Yang Y.S., Pan J.X., Pereira G.G., Taylor J.A., Clennell B., Zou C.N. (2014) Lattice Boltzmann modeling of permeability in porous materials with partially percolating voxels, Phys. Rev. E 90, 033301. [Google Scholar]
  • Ferreol B., Rothman D.H. (1995) Lattice-Boltzmann simulations of flow through Fontainebleau sandstone, Transp. Porous Media 20, 3–20. [Google Scholar]
  • Pan C., Luo L.S., Miller C.T. (2006) An evaluation of lattice boltzmann schemes for porous medium flow simulation, Comput. Fluids 35, 898–909. [Google Scholar]
  • Prestininzi P., Montessori A., Rocca M.L., Succi S. (2016) Re- assessing the single relaxation time lattice boltzmann method for the simulation of darcy’s flows, Int. J. Mod. Phys. C 27, 1650037. [Google Scholar]
  • Li J., Ho M.T., Wu L., Zhang Y.-H. (2018) On the unintentional rarefaction effect in LBM modeling of intrinsic permeability, Adv. Geo-Energy Res. 2, 404–409. doi: 10.26804/ager.2018.04.05. [CrossRef] [Google Scholar]
  • Zhang Y.H., Qin R.S., Emerson D.R. (2005) Lattice Boltzmann simulation of rarefied gas flows in microchannels, Phys. Rev. E 71, 047702. [Google Scholar]
  • Rezaee M.R., Jafari A., Kazemzadeh E. (2006) Relationships between permeability, porosity and pore throat size in carbonate rocks using regression analysis and neural networks, J. Geophys. Eng. 3, 370–376. [CrossRef] [Google Scholar]
  • Sun H., Belhaj H., Tao G., Vega S., Liu L. (2019) Rock properties evaluations for carbonate reservoir characterization with multi- scale digital rock images, J. Pet. Sci. Eng. 173, 175, 654–664. [Google Scholar]
  • Islam A., Faisal T.F., Chevalier S., Jouini M.S., Sassi M. (2019) Multi-scale experimental and numerical simulation workflow of absolute permeability in heterogeneous carbonates, J. Pet. Sci. Eng. 173, 173, 326–338. [Google Scholar]
  • Wardlaw N.C., Taylor R.P. (1976) Mercury capillary pressure curves and the intepretation of pore structure and capillary behaviour in reservoir rocks, Bull. Can. Pet. Geol. 24, 2, 225–262. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.