Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Article Number 64
Number of page(s) 11
Published online 25 September 2020
  • Fakoya M.F., Shah S.N. (2017) Emergence of nanotechnology in the oil and gas industry: Emphasis on the application of silica nanoparticles, Petroleum 3, 391–405. [CrossRef] [Google Scholar]
  • Nelson E.B., Guillot D. (2006) Well cementation, Developments in petroleum science book series, Schlumberger. [Google Scholar]
  • Yang J., Ji S., Qin W., Lu Y. (2015) Advances of nanotechnologies in oil and gas industries, Energy Explor. Exploit. 33, 5, 639–657. [CrossRef] [Google Scholar]
  • Agbasimalo N. (2012) Experimental study of the effect of drilling fluid contamination on the integrity of cement-formation interface, MSc Thesis, Department of Pet. Eng., Louisiana State University, USA. [Google Scholar]
  • Agbasimalo N., Radonjic M. (2012) Experimental study of portland cement/rock interface in relation to wellbore stability for Carbon Capture and Storage (CCS), in: 46th U.S. Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association, Chicago, Illinois, 9 p. [Google Scholar]
  • Agbasimalo N., Radonjic M. (2014) Experimental study of the impact of drilling fluid contamination on the integrity of cement-formation interface, J. Energy Res. Tech. 136, 4, 042908. [CrossRef] [Google Scholar]
  • Taoutaou S., Goh S.H., Bermea J.A.V., Vinaipanit M., McClure J. (2015) Achieving zonal isolation by using new-generation mud removal chemistry and design methodology to displace non-aqueous drilling fluid, Society of Petroleum Engineers. [Google Scholar]
  • Nygaard R. (2010) Well design and well integrity. Wabamun area CO2 sequestration project. Energy and Environmental Systems Group. [Google Scholar]
  • Watson T.L., Bachu S. (2007) Evaluation of the potential for gas and CO2 leakage along wellbores, in: E&P Environmental and Safety Conference, Galveston, Texas, USA. [Google Scholar]
  • Radonjic M., Oyibo A. (2014) Experimental evaluation of wellbore cement-formation shear bond strength in presence of drilling fluid contamination, in: 5th Int. Conf. on Porous Media and Their Applications in Science, Eng. & Indust. Eds, ECI Symposium Series. [Google Scholar]
  • Dwight K.S. (1990) Cementing, Second printing, SPE, New York City. [Google Scholar]
  • API10A (2010) Specification for cements and materials for well cementing, 24th edn, American Petroleum Institute. [Google Scholar]
  • Gu J. (2009) Isolation problems of cement-formation interface and scientific conception of mud cake to agglomerated cake, J. Oil Gas. Technol. 31, 1, 71–74. [Google Scholar]
  • Haiyang H., Jun G., Ju H., Zhongwu W., Qinggui W., Yikun Z., Wenlong W. (2016) Comparative study on cementation of cement-mudcake interface with and without mud-cake-solidification-agents application in oil and gas wells, J. Pet. Sci. Eng. 147, 143–153. [Google Scholar]
  • Opedal N., Todorovic J., Torsaeter M., Vralstad T., Mushtaq W. (2014) Experimental study on the cement-formation bonding, SPE. [Google Scholar]
  • Santra A.K., Boul P., Pang X. (2012) Influence of nanomaterials in oilwell cement hydration and mechanical properties, in: SPE International Oilfield Nanotechnology Conf. & Exh., Noordwijk, The Netherlands. [Google Scholar]
  • Yuan H., Shi Y., Xu Z., Lu C., Ni Y., Lan X. (2014) Effect of nano-MgO on thermal and mechanical properties of aluminate cement composite thermal energy storage materials, Ceram. Int. 40, 3, 4811–4817. [Google Scholar]
  • Quercia G., Brouwers H.J.H., Garnier A., Luke K. (2016) Influence of olvine nanosilica on hydration and performance of oil-well cement slurries, Mater. Design 96, 162–170. [CrossRef] [Google Scholar]
  • Jafariesfad N., Gong Y., Geiker M.R., Skalle P. (2016) Nano-sized MgO with engineered expansive property for oilwell cement systems, in: Proceedings of the SPE Bergen One Day Seminar, Grieghallen, Bergen, Norway, 20 April 2016, Society of Petroleum Engineers, Richardson, TX, USA. [Google Scholar]
  • Agista M., Guo K., Yu Z. (2018) A state-of-the-art review of nanoparticles application in petroleum with a focus on enhanced oil recovery, Appl. Sci. 8, 871, 1–29. [CrossRef] [Google Scholar]
  • Senff L., Hotza D., Lucas S., Ferrera V.M., Labrincha J.A. (2012) Effect of nano-SiO2 and nano-TiO2 addition on the rheological behavior and the hardened properties of cement mortars, Mater. Sci. Eng. A 532, 354–361. [CrossRef] [Google Scholar]
  • Amanullah M., Al-Tahini A.M. (2009) Nanotechnology- its significance in smart fluid development for oil and gas field, in: SPE Saudi Arabia Section Technical Symposium, SPE. [Google Scholar]
  • Patil R., Deshpande A. (2012) Use of nanomaterials in cementing applications, in: SPE International Oilfield Nanotechnology Conference and Exhibition, 12–14 June, SPE, Noordwijk, The Netherlands. [Google Scholar]
  • Senff L., Hotza D., Repette W.L. (2010) Rheological characterization of cement pastes with nanosilica, silica fumes and superplasters additions, Adv. Appl. Ceram. Struct. Funct. Bioceram. 109, 213–218. [CrossRef] [Google Scholar]
  • Stefanidou M. (2012) Influence of nano-SiO2 on the portland cement pastes, Compos. Part B Eng. 43, 2706–2710. [CrossRef] [Google Scholar]
  • Qing Y., Zenan Z., Li S. (2006) A comparative study on the pozzalonic activity between nano-silica and silica fumes, J. Wuhan Univ. Tech. Mat. Sci. 21, 153–157. [CrossRef] [Google Scholar]
  • Haruehansapong S., Pulngern T., Chucheepsakul S. (2014) Effect of the particle size of nanosilica on the compressive, strength and the optimum replacement content of cement mortar containing nano-SiO2, Construct. Build. Mater. 50, 471–477. [CrossRef] [Google Scholar]
  • Li H., Xiao H., Yuan J., Ou J. (2004) Microstructure of cement mortar with nano-particles, Compos. Part B Eng. 35, 185–189. [CrossRef] [Google Scholar]
  • Lee B.Y., Jayapalan A.R., Kurtis K.E. (2013) Effects of nano-TiO2 on properties of cement-based materials, Mag. Concr. Res. 65, 21, 1293–1302. [CrossRef] [Google Scholar]
  • El-Diasty A.I., Ragab A.M.S. (2013) Applications of Nanotechnology in the Oil & Gas Industry: Latest Trends Worldwide & Future Challenges in Egypt, in: North Africa Technical Conference and Exhibition, Society of Petroleum Engineers, Cairo, Egypt, p. 13. [Google Scholar]
  • Ershadi V., Ebadi T., Rabbani A.R., Ershadi L., Soltanian H. (2011) The effect of nanosilica on cement matrix permeability in oil well to decrease the pollution of receptive environment, Int. J. Environ. Sci. Dev. 2, 128–132. [CrossRef] [Google Scholar]
  • Nabhani N., Emami M., Moghadam A. (2011) Application of nanotechnology and nanomaterials in oil and gas industry, AIP Conference Proceedings 1415, pp. 128–131. [Google Scholar]
  • Chithra S., Kumar S., Chinnaraju K. (2016) The effect of colloidal nano-silica on workability, mechanical and durability properties of high performance concrete with copper slag as partial fine aggregate, Constr. Build. Mater. 113, 794–804. [Google Scholar]
  • Khayati G.H., Ghasabe H.M., Karfarma M. (2015) A survey on the application of oxide nanoparticles for improving concrete processing, Adv. Concr. Constr. 3, 2, 145–159. [CrossRef] [Google Scholar]
  • Singh L.P., Karade S., Bhattacharyya S., Yousuf M.M., Ahalawat S. (2013) Beneficial role of nanosilica in cement based materials – A review, Constr. Build. Mater. 47, 1069–1077. [Google Scholar]
  • Biricik H., Sarier N. (2014) Comparative study of the characteristics of nano silica, silica fume- and fly ash-incorporated cement mortars, Mater. Res. 17, 570–582. [CrossRef] [Google Scholar]
  • Liu J., Li Q., Xu S. (2015) Influence of nanoparticles on fluidity and mechanical properties of cement mortar, Constr. Build. Mater. 101, 892–901. [Google Scholar]
  • API10A (2010) Specification for cements and materials for well cementing, 24th edn, American Petroleum Institute. [Google Scholar]
  • Carvalho I.P., Sousa R.B., Matos J.M.E., Moura J.V.B., Freire P.T.C., Pinheiro G.S., Luz-Lima C. (2020) Low-temperature induced phase transitions in BaWO4:Er3+ microcrystals: A Raman scattering study, J. Mol. Struct. 1204, 127498. [Google Scholar]
  • Berra M., Carassiti F., Mangialardi T., Paolini A.E., Sebastiani M. (2012) Effects of nanosilica addition on workability and compressive strength of Portland cement pastes, Constr. Build Mat. 35, 666–675. [CrossRef] [Google Scholar]
  • Silvestre J.P.T. (2015) Nanotechnology in construction: Towards structural applications, MSc Thesis, Lisbon University Technology, Lisbon, Portugal. [Google Scholar]
  • Wang C., Chen X., Wei X. (2017) Can nanosilica sol prevent oil-well cement from strength retrogression under high temperature? Constr. Build. Mater. 144, 574–585. [Google Scholar]
  • Abo-El-Enein S.A., El-Gamal S.M.A., Aiad I.A., Azab M.M., Mohamed O.A. (2016) Early hydration characteristics of oil well cement pastes admixed with newly prepared organic admixture, HBRC 14, 2, 207–214. [CrossRef] [Google Scholar]
  • Scrivener K.L., Kirkpatrick R.J. (2008) Innovation in use and research on cementitious material, Cem. Concr. Res. 38, 2, 128–136. [Google Scholar]
  • Mleza Y., Hajjaji M. (2012) Microstructural characterisation and physical properties of cured thermally activated clay-lime blends, Constr. Build. Mater. 26, 226–232. [Google Scholar]
  • Frias M., Cabrera J. (2001) Influence of MK on the reaction kinetics in MK/lime and MK-blended cement systems at 20 °C, Cem. Concr. Res. 31, 519–527. [Google Scholar]
  • Chang C.F., Chen J.W. (2006) The experimental investigation of concrete carbonation depth, Cem. Concr. Res. 36, 1760–1767. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.